Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/33731
Título: | PET-CT image fusion using random forest and à-trous wavelet transform | Autores/as: | Seal, Ayan Bhattacharjee, Debotosh Nasipuri, Mita Rodríguez-Esparragón, Dionisio Menasalvas, Ernestina Gonzalo-Martin, Consuelo |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores 3325 Tecnología de las telecomunicaciones 2209 Óptica 120325 Diseño de sistemas sensores 220990 Tratamiento digital. Imágenes |
Palabras clave: | Computed tomography images Fusion metrics Fusion rules Medical image fusion Positron emission tomography, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | International Journal for Numerical Methods in Biomedical Engineering | Resumen: | New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful. | URI: | http://hdl.handle.net/10553/33731 | ISSN: | 2040-7939 | DOI: | 10.1002/cnm.2933 | Fuente: | International Journal for Numerical Methods in Biomedical Engineering [ISSN 2040-7939], v. 34 (3), e2933 | URL: | http://api.elsevier.com/content/abstract/scopus_id/85036590300 |
Colección: | Artículos |
Citas SCOPUSTM
38
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
32
actualizado el 15-dic-2024
Visitas
42
actualizado el 16-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.