Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/33731
Título: PET-CT image fusion using random forest and à-trous wavelet transform
Autores/as: Seal, Ayan
Bhattacharjee, Debotosh
Nasipuri, Mita
Rodríguez-Esparragón, Dionisio 
Menasalvas, Ernestina
Gonzalo-Martin, Consuelo
Clasificación UNESCO: 1203 Ciencia de los ordenadores
3325 Tecnología de las telecomunicaciones
2209 Óptica
120325 Diseño de sistemas sensores
220990 Tratamiento digital. Imágenes
Palabras clave: Computed tomography images
Fusion metrics
Fusion rules
Medical image fusion
Positron emission tomography, et al.
Fecha de publicación: 2017
Publicación seriada: International Journal for Numerical Methods in Biomedical Engineering 
Resumen: New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful.
URI: http://hdl.handle.net/10553/33731
ISSN: 2040-7939
DOI: 10.1002/cnm.2933
Fuente: International Journal for Numerical Methods in Biomedical Engineering [ISSN 2040-7939], v. 34 (3), e2933
URL: http://api.elsevier.com/content/abstract/scopus_id/85036590300
Colección:Artículos
Vista completa

Citas SCOPUSTM   

38
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

32
actualizado el 15-dic-2024

Visitas

42
actualizado el 16-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.