Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/25108
Título: | Characterization of physiological networks in sleep apnea patients using artificial neural networks for Granger causality computation | Autores/as: | Cárdenas, J. Orjuela-Cañón, A. Cerquera, A. Ravelo García, Antonio G. |
Clasificación UNESCO: | 3314 Tecnología médica 120304 Inteligencia artificial |
Palabras clave: | Artificial neural network Granger causality Obstructive sleep apnea syndrome Brain-heart networks CPAP |
Fecha de publicación: | 2017 | Publicación seriada: | Proceedings of SPIE - The International Society for Optical Engineering | Conferencia: | 13th International Conference on Medical Information Processing and Analysis, SIPAIM 2017 | Resumen: | Different studies have used Transfer Entropy (TE) and Granger Causality (GC) computation to quantify interconnection between physiological systems. These methods have disadvantages in parametrization and availability in analytic formulas to evaluate the significance of the results. Other inconvenience is related with the assumptions in the distribution of the models generated from the data. | Descripción: | 13th International Conference on Medical Information Processing and Analysis, SIPAIM 2017; San Andres Island; Colombia; 5-7 October 2017; Code 132645 | URI: | http://hdl.handle.net/10553/25108 | ISBN: | 9781510616332 | ISSN: | 0277-786X | DOI: | 10.1117/12.2284957 | Fuente: | Proceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X] v. 10572, article number 1057219 | Derechos: | by-nc-nd |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
109
actualizado el 21-sep-2024
Descargas
273
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.