Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/154926
| Título: | Zero-Shot Evaluation of Commercial Software and State-of-the-Art FER Models on Standardized Datasets | Autores/as: | Salas Cáceres, José Ignacio Lorenzo Navarro, José Javier Castrillón Santana, Modesto Fernando Picazo Peral, Patricia Moreno Gil, Sergio |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Facial Expression Recognition Biometry Facereader Validation |
Fecha de publicación: | 2026 | Conferencia: | 23rd International Conference on Image Analysis and Processing (ICIAP2025) | Resumen: | Commercial facial expression recognition tools, such as FaceReader 9©, are often used as off-the-shelf solutions in applied research and industry. However, their real-world generalization capacity, especially in dynamic and unconstrained environments, is rarely scrutinized. This study evaluates the zero-shot performance of FaceReader 9 on two standardized dynamic datasets, RAVDESS and CREMA-D, and compares its results with several publicly available state-of-the-art FER models. The results reveal that FaceReader 9 is significantly outperformed across all metrics, with accuracy levels close to random chance on the more challenging dataset. In contrast, even static models trained on general-purpose datasets perform markedly better, and a dynamic model specifically trained on the evaluation datasets achieves a substantial performance gain. These findings emphasize the limitations of commercial FER systems in dynamic contexts and highlight the value of task-specific training and temporal modeling for robust emotion recognition. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/154926 | ISBN: | 978-3-032-11316-0 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-032-11317-7_4 |
| Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.