Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154926
Título: Zero-Shot Evaluation of Commercial Software and State-of-the-Art FER Models on Standardized Datasets
Autores/as: Salas Cáceres, José Ignacio 
Lorenzo Navarro, José Javier 
Castrillón Santana, Modesto Fernando 
Picazo Peral, Patricia 
Moreno Gil, Sergio 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Facial Expression Recognition
Biometry
Facereader
Validation
Fecha de publicación: 2026
Conferencia: 23rd International Conference on Image Analysis and Processing (ICIAP2025)
Resumen: Commercial facial expression recognition tools, such as FaceReader 9©, are often used as off-the-shelf solutions in applied research and industry. However, their real-world generalization capacity, especially in dynamic and unconstrained environments, is rarely scrutinized. This study evaluates the zero-shot performance of FaceReader 9 on two standardized dynamic datasets, RAVDESS and CREMA-D, and compares its results with several publicly available state-of-the-art FER models. The results reveal that FaceReader 9 is significantly outperformed across all metrics, with accuracy levels close to random chance on the more challenging dataset. In contrast, even static models trained on general-purpose datasets perform markedly better, and a dynamic model specifically trained on the evaluation datasets achieves a substantial performance gain. These findings emphasize the limitations of commercial FER systems in dynamic contexts and highlight the value of task-specific training and temporal modeling for robust emotion recognition.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/154926
ISBN: 978-3-032-11316-0
ISSN: 0302-9743
DOI: 10.1007/978-3-032-11317-7_4
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.