Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/154903
| Título: | Assessing Processing Strategies on Data from Medical Hyperspectral Acquisition Systems | Autores/as: | Quintana Quintana,Laura Vega, Carlos León Martín, Sonia Raquel Socorro Marrero, Guillermo Valentín Ortega Sarmiento, Samuel Marrero Callicó, Gustavo Iván |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Fecha de publicación: | 2024 | Conferencia: | 27th Euromicro Conference Series on Digital System Design (DSD 2024) | Resumen: | Hyperspectral imaging (HSI) has gained prominence in medical diagnostics due to its ability to capture and analyse detailed spectral information beyond human visual capabilities. Processing of HSI data is essential to enhance subsequent analysis and ensure the accuracy of results by reducing noise and unwanted artifacts. This paper provides an overview of state-of-the-art processing methods for HSI data, focusing on smoothing, normalization, and spectral derivatives. The efficacy of these methods is evaluated using root mean square error (RMSE) to compare pre-processed data with wavelength reference standard, alongside execution time considerations. Results indicate that certain algorithms, such as smoothing based on moving average, standard normal variate, and first spectral derivatives, yield superior performance across different medical HSI systems. Additionally, combining these processing techniques further improves data fidelity to the wavelength reference standard. Overall, this study offers insights into optimal processing strategies for enhancing the accuracy and reliability of HSI data. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/154903 | ISBN: | 979-8-3503-8038-5 | DOI: | 10.1109/DSD64264.2024.00068 |
| Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.