Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/154901
| Título: | YOLOX-based framework for nuclei detection on whole-slide histopathological RGB and hyperspectral images | Autores/as: | Vega, Carlos Quintana Quintana,Laura Ortega Sarmiento, Samuel Fabelo Gómez, Himar Antonio Sauras, Esther Gallardo, Noèlia Mata, Daniel Lejeune, Marylene Cabrera López, Carlos Marrero Callicó, Gustavo Iván |
Coordinadores/as, Directores/as o Editores/as: | Tomaszewski, John E. Ward, Aaron D. |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Fecha de publicación: | 2023 | Publicación seriada: | Progress in Biomedical Optics and Imaging - Proceedings of SPIE | Conferencia: | SPIE Medical Imaging, 2023 | Resumen: | The current advances in Whole-Slide Imaging (WSI) scanners allow for more and better visualization of histological slides. However, the analysis of histological samples by visual inspection is subjective and could be challenging. State-of-the-art object detection algorithms can be trained for cell spotting in a WSI. In this work, a new framework for the detection of tumor cells in high-resolution and high-detail using both RGB and Hyperspectral (HS) imaging is proposed. The framework introduces techniques to be trained on partially labeled data, since labeling at the cellular level is a time and energy-consuming task. Furthermore, the framework has been developed for working with RGB and HS information reduced to 3 bands. Current results are promising, showcasing in RGB similar performance as reference works (F1-score = 66.2%) and high possibilities for the integration of reduced HS information into current state-of-art deep learning models, with current results improving the mean precision a 6.3% from synthetic RGB images. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/154901 | ISBN: | 9781510660472 | ISSN: | 1605-7422 | DOI: | 10.1117/12.2654036 |
| Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.