Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154901
Título: YOLOX-based framework for nuclei detection on whole-slide histopathological RGB and hyperspectral images
Autores/as: Vega, Carlos
Quintana Quintana,Laura 
Ortega Sarmiento, Samuel 
Fabelo Gómez, Himar Antonio 
Sauras, Esther
Gallardo, Noèlia
Mata, Daniel
Lejeune, Marylene
Cabrera López, Carlos 
Marrero Callicó, Gustavo Iván 
Coordinadores/as, Directores/as o Editores/as: Tomaszewski, John E.
Ward, Aaron D.
Clasificación UNESCO: 33 Ciencias tecnológicas
Fecha de publicación: 2023
Publicación seriada: Progress in Biomedical Optics and Imaging - Proceedings of SPIE 
Conferencia: SPIE Medical Imaging, 2023
Resumen: The current advances in Whole-Slide Imaging (WSI) scanners allow for more and better visualization of histological slides. However, the analysis of histological samples by visual inspection is subjective and could be challenging. State-of-the-art object detection algorithms can be trained for cell spotting in a WSI. In this work, a new framework for the detection of tumor cells in high-resolution and high-detail using both RGB and Hyperspectral (HS) imaging is proposed. The framework introduces techniques to be trained on partially labeled data, since labeling at the cellular level is a time and energy-consuming task. Furthermore, the framework has been developed for working with RGB and HS information reduced to 3 bands. Current results are promising, showcasing in RGB similar performance as reference works (F1-score = 66.2%) and high possibilities for the integration of reduced HS information into current state-of-art deep learning models, with current results improving the mean precision a 6.3% from synthetic RGB images.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/154901
ISBN: 9781510660472
ISSN: 1605-7422
DOI: 10.1117/12.2654036
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.