Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136218
Título: Evolution of Burned Area in Forest Fires under Climate Change Conditions in Southern Spain Using ANN
Autores/as: Pérez Sánchez, Julio 
Jimeno-Sáez, Patricia
Senent-Aparicio, Javier
Díaz-Palmero, José María
Cabezas-Cerezo, Juan de Dios
Clasificación UNESCO: 3106 Ciencia forestal
310603 Control de la erosión
310606 Protección
Palabras clave: Wildfire
ANN
Climate change
Confusion matrix
K-fold cross-validation, et al.
Fecha de publicación: 2019
Publicación seriada: Applied Sciences (Basel) 
Resumen: Wildfires in Mediterranean regions have become a serious problem, and it is currently the main cause of forest loss. Numerous prediction methods have been applied worldwide to estimate future fire activity and area burned in order to provide a stable basis for future allocation of fire-fighting resources. The present study investigated the performance of an artificial neural network (ANN) in burned area size prediction and to assess the evolution of future wildfires and the area concerned under climate change in southern Spain. The study area comprised 39.41 km2 of land burned from 2000 to 2014. ANNs were used in two subsequential phases: classifying the size of the wildfires and predicting the burned surface for fires larger than 30,000 m2. Matrix of confusion and 10-fold cross-validations were used to evaluate ANN classification and mean absolute deviation, root mean square error, mean absolute percent error and bias, which were the metrics used for burned area prediction. The success rate achieved was above 60–70% depending on the zone. An average temperature increase of 3 °C and a 20% increase in wind speed during 2071–2100 results in a significant increase of the number of fires, up to triple the current figure, resulting in seven times the average yearly burned surface depending on the zone and the climate change scenario.
URI: http://hdl.handle.net/10553/136218
ISSN: 2076-3417
DOI: 10.3390/app9194155
Fuente: Applied Sciences [ISSN 2076-3417], v. 9 (19), 4155
Colección:Artículos
Adobe PDF (3,5 MB)
Vista completa

Citas SCOPUSTM   

17
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.