Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/135654
Título: | Incorporating expert judgment for detecting relevant factors in social networks undetected by ordinary methods | Otros títulos: | Detección de factores relevantes en redes sociales incorporando información de expertos | Autores/as: | Pérez Sánchez, José María Acosta García, María Gómez Déniz, Emilio |
Clasificación UNESCO: | 5302 Econometría | Palabras clave: | Bayesian Inference Distribución A Priori Informativa Inferencia Bayesiana Informative Prior Distributions Mcmc Simulation Methods, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Revista de Metodos Cuantitativos para la Economia y la Empresa | Resumen: | Information and communications technology (ICT) has potential to complement information sharing bureaus (ISB) Most companies use social networks as communication channels because they can provide significant business benefits. This paper focuses on the impact of social networks in a Spanish foundation for innovation and knowledge dissemination, and how they affect its main events and activities. We examine the factors underlying a re-tweet on Twitter or a share on Facebook in order to analyze reporting of this foundation’s principal events. Comparisons with three statistical models were performed (standard regression and Bayesian regression with non-informative and informative priors). We conclude that the advantage offered by Bayesian over classic methodology is demonstrated by incorporation of collateral information, usually provided by experts, which can refine the model and obtain conclusions that cannot be identified otherwise. This conclusion may have significant implications for companies that make use of social networks. | URI: | http://hdl.handle.net/10553/135654 | ISSN: | 1886-516X | DOI: | 10.46661/revmetodoscuanteconempresa.8135 | Fuente: | Revista de Metodos Cuantitativos para la Economia y la Empresa[ISSN 1886-516X] (38), p. 1-13, (Enero 2024) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.