Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135609
Título: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
Autores/as: Kwiatkowski, Lester
Torres, Olivier
Bopp, Laurent
Aumont, Olivier
Chamberlain, Matthew
Christian, James R.
Dunne, John P.
Gehlen, Marion
Ilyina, Tatiana
John, Jasmin G.
Lenton, Andrew
Li, Hongmei
Lovenduski, Nicole S.
Orr, James C.
Palmieri, Julien
Santana Falcon, Yeray 
Schwinger, Jörg
Séférian, Roland
Stock, Charles A.
Tagliabue, Alessandro
Takano, Yohei
Tjiputra, Jerry
Toyama, Katsuya
Tsujino, Hiroyuki
Watanabe, Michio
Yamamoto, Akitomo
Yool, Andrew
Ziehn, Tilo
Clasificación UNESCO: 2510 Oceanografía
241705 Biología marina
Palabras clave: Anthropogenic climate change
Marine ecosystems
Euphotic-zone
Nitrate reductions
Ocean impact drivers, et al.
Fecha de publicación: 2020
Proyectos: Tropical and South Atlantic - climate-based marine ecosystem prediction for sustainable management 
Horizon 2020 (CRESCENDO – 641816)
Horizon 2020 (COMFORT – 820989)
Publicación seriada: Biogeosciences 
Resumen: Anthropogenic climate change is projected to lead to ocean warming, acidification, deoxygenation, reductions in near-surface nutrients, and changes to primary production, all of which are expected to affect marine ecosystems. Here we assess projections of these drivers of environmental change over the twenty-first century from Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) that were forced under the CMIP6 Shared Socioeconomic Pathways (SSPs). Projections are compared to those from the previous generation (CMIP5) forced under the Representative Concentration Pathways (RCPs). A total of 10 CMIP5 and 13 CMIP6 models are used in the two multi-model ensembles. Under the high-emission scenario SSP5-8.5, the multi-model global mean change (2080 2099 mean values relative to 1870 1899) the intermodel SD in sea surface temperature, surface pH, subsurface (100 600 m) oxygen concentration, euphotic (0 100 m) nitrate concentration, and depth-integrated primary production is +3.47±0.78 °C, -0.44±0.005, -13.27±5.28, -1.06±0.45 mmol m-3 and -2.99±9.11 % respectively. Under the low-emission, high-mitigation scenario SSP1-2.6, the corresponding global changes are +1.42±0.32 °C, -0.16±0.002, -6.36±2.92, -0.52±0.23 mmol m-3, and -0.56±4.12 %. Projected exposure of the marine ecosystem to these drivers of ocean change depends largely on the extent of future emissions, consistent with previous studies. The ESMs in CMIP6 generally project greater warming, acidification, deoxygenation, and nitrate reductions but lesser primary production declines than those from CMIP5 under comparable radiative forcing. The increased projected ocean warming results from a general increase in the climate sensitivity of CMIP6 models relative to those of CMIP5. This enhanced warming increases upper-ocean stratification in CMIP6 projections, which contributes to greater reductions in upper-ocean nitrate and subsurface oxygen ventilation. The greater surface acidification in CMIP6 is primarily a consequence of the SSPs having higher associated atmospheric CO2 concentrations than their RCP analogues for the same radiative forcing. We find no consistent reduction in inter-model uncertainties, and even an increase in net primary production inter-model uncertainties in CMIP6, as compared to CMIP5.
URI: http://hdl.handle.net/10553/135609
ISSN: 1726-4170
DOI: 10.5194/bg-17-3439-2020
Fuente: Biogeosciences [ISSN 1726-4170], v. 17, n. 13, p. 3439–3470, (Julio 2020)
Colección:Artículos
Adobe PDF (11,53 MB)
Vista completa

Citas SCOPUSTM   

482
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

477
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.