Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/134859
Título: Detecting Short-Notice Cancellation in Hotels with Machine Learning
Autores/as: Caballero Sanchez,Eleazar 
Sánchez Medina, Agustín Jesús 
Clasificación UNESCO: 120601 Construcción de algoritmos
120304 Inteligencia artificial
531290 Economía sectorial: turismo
Palabras clave: Hotel cancellation forecast
Decision tree algorithm
Fuzzy C-means clustering
Machine learning
Random forest
Fecha de publicación: 2024
Publicación seriada: Engineering Proceedings 
Resumen: Cancellations play a critical role in the lodging industry. Considering the time horizon, cancellations placed close to check-in have a significant impact on hoteliers, who must respond promptly for effective management. In recent years, the introduction of personal name records (PNR) has brought innovative approaches to this domain, but short-notice cancellation prediction is still underdeveloped. Using real PNR data with more than 10k reservations provided by a four-star hotel, this research aims to combine fuzzy clustering with tree decision techniques and random forest under R software version 4.3.3 to forecast cancellations placed close to the entry day, slightly improving the performance of individual techniques.
URI: https://accedacris.ulpgc.es/handle/10553/134859
ISSN: 2673-4591
DOI: 10.3390/engproc2024068043
Fuente: Engineering Proceedings [ISSN 2673-4591], v. 68, n. 1, 43, (Julio 2024)
Colección:Documento de trabajo
Adobe PDF (254,57 kB)
Vista completa

Visitas

12
actualizado el 11-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.