Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134859
Título: Detecting Short-Notice Cancellation in Hotels with Machine Learning
Autores/as: Caballero Sanchez,Eleazar 
Sánchez Medina, Agustín Jesús 
Clasificación UNESCO: 120601 Construcción de algoritmos
120304 Inteligencia artificial
531290 Economía sectorial: turismo
Palabras clave: Hotel cancellation forecast
Decision tree algorithm
Fuzzy C-means clustering
Machine learning
Random forest
Fecha de publicación: 2024
Publicación seriada: Engineering Proceedings 
Resumen: Cancellations play a critical role in the lodging industry. Considering the time horizon, cancellations placed close to check-in have a significant impact on hoteliers, who must respond promptly for effective management. In recent years, the introduction of personal name records (PNR) has brought innovative approaches to this domain, but short-notice cancellation prediction is still underdeveloped. Using real PNR data with more than 10k reservations provided by a four-star hotel, this research aims to combine fuzzy clustering with tree decision techniques and random forest under R software version 4.3.3 to forecast cancellations placed close to the entry day, slightly improving the performance of individual techniques.
URI: http://hdl.handle.net/10553/134859
ISSN: 2673-4591
DOI: 10.3390/engproc2024068043
Fuente: Engineering Proceedings [ISSN 2673-4591], v. 68, n. 1, 43, (Julio 2024)
Colección:Documento de trabajo
Adobe PDF (254,57 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.