Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/132039
Título: | Index-based forest degradation mapping using high and medium resolution multispectral sensors | Autores/as: | Rodriguez-Esparragon, D. Marcello, Javier Eugenio, Francisco Gamba, Paolo |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Leaf Pigment Content Vegetation Indexes Remote Reflectance Biodiversity, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | International Journal of Digital Earth | Resumen: | Monitoring dense forest ecosystems, such as the laurel forest in Garajonay National Park, is vital for biodiversity conservation, carbon storage, and ecological balance. This study employs satellite remote sensing technologies to introduce a novel methodology, based on vegetation indices, aiming to assess and protect the health of the forest. Utilizing the Jeffries-Matusita distance and a histogram-based method, optimal indices to map forest degradation, like Wide Dynamic Range Vegetation Index (WDRVI) and Modified Simple Ratio (MSR), were identified among 19 generated indices. The study processed imagery from three satellite sensors (WorldView-2, PlanetScope and Sentinel-2), producing maps distinguishing healthy and degraded areas. The study's practical significance lies in offering a method to assess the suitability of sensors and indices for effectively mapping forest degradation. This approach aids conservation efforts and provides valuable insights for environmental managers and policymakers, facilitating the implementation of targeted strategies to safeguard Garajonay National Park's unique laurel forest ecosystem. Emphasizing the role of remote sensing in practical vegetation protection endeavors, the study contributes to on-the-ground initiatives, ensuring the preservation and sustainability of the park's rich biodiversity. | URI: | http://hdl.handle.net/10553/132039 | ISSN: | 1753-8947 | DOI: | 10.1080/17538947.2024.2365981 | Fuente: | International Journal Of Digital Earth[ISSN 1753-8947],v. 17 (1), (Diciembre 2024) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.