Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129823
Título: Acceleration of a CNN-based Heart Sound Segmenter: Implementation on Different Platforms Targeting a Wearable Device
Autores/as: Ragusa, Domenico
Rodriguez-Almeida, Antonio J.
Nolting, Stephan
Torti, Emanuele
Fabelo, Himar 
Hoyer, Ingo
Utz, Alexander
Callicó, Gustavo M. 
Leporati, Francesco
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Cardiovascular Diseases
Convolutional Neural Networks
Phonocardiogram
Quantization
Risc-V, et al.
Fecha de publicación: 2023
Conferencia: 26th Euromicro Conference on Digital System Design (DSD 2023) 
Resumen: Cardiovascular diseases (CVDs) are currently one of the leading causes of death worldwide. Being able to detect their symptoms at early stages, even the most hidden ones, is crucial to shorten the diagnosis time and facilitate an early treatment. Currently, the use of continuous tracking systems, mainly based on wearable devices that analyze data using artificial intelligence (AI) algorithms, is being explored to automatically identify, in real time, CVDs symptoms. This could be especially relevant in lowincome countries where there is a shortage of specialized doctors. Therefore, this work focuses on analyzing the real-time execution of the state-of-the-art convolutional neural network (CNN) for heart sound segmentation (HSS) on platforms such as traditional CPU/GPU and the Fraunhofer IMS
URI: http://hdl.handle.net/10553/129823
ISBN: 9798350344196
DOI: 10.1109/DSD60849.2023.00049
Fuente: Proceedings - 2023 26th Euromicro Conference on Digital System Design, DSD 2023[EISSN ], p. 294-301, (Enero 2023)
Colección:Actas de congresos
Vista completa

Visitas

79
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.