Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129719
Título: On the Use of Kullback–Leibler Divergence for Kernel Selection and Interpretation in Variational Autoencoders for Feature Creation
Autores/as: Mendonça, Fábio
Mostafa, Sheikh Shanawaz
Morgado-Dias, Fernando
Ravelo-García, Antonio G. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Convolutional Neural Network
Feature Selection
Latent Variables
Probabilistic Classifier
Variational Autoencoder
Fecha de publicación: 2023
Publicación seriada: Information (Switzerland) 
Resumen: This study presents a novel approach for kernel selection based on Kullback–Leibler divergence in variational autoencoders using features generated by the convolutional encoder. The proposed methodology focuses on identifying the most relevant subset of latent variables to reduce the model’s parameters. Each latent variable is sampled from the distribution associated with a single kernel of the last encoder’s convolutional layer, resulting in an individual distribution for each kernel. Relevant features are selected from the sampled latent variables to perform kernel selection, which filters out uninformative features and, consequently, unnecessary kernels. Both the proposed filter method and the sequential feature selection (standard wrapper method) were examined for feature selection. Particularly, the filter method evaluates the Kullback–Leibler divergence between all kernels’ distributions and hypothesizes that similar kernels can be discarded as they do not convey relevant information. This hypothesis was confirmed through the experiments performed on four standard datasets, where it was observed that the number of kernels can be reduced without meaningfully affecting the performance. This analysis was based on the accuracy of the model when the selected kernels fed a probabilistic classifier and the feature-based similarity index to appraise the quality of the reconstructed images when the variational autoencoder only uses the selected kernels. Therefore, the proposed methodology guides the reduction of the number of parameters of the model, making it suitable for developing applications for resource-constrained devices.
URI: http://hdl.handle.net/10553/129719
DOI: 10.3390/info14100571
Fuente: Information (Switzerland)[EISSN 2078-2489],v. 14 (10), (Octubre 2023)
Colección:Artículos
Adobe PDF (4,05 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

76
actualizado el 16-nov-2024

Descargas

51
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.