Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129252
Título: Deep Learning for the Analysis of Solar Radiation Prediction with Different Time Horizons and Data Acquisition Frequencies
Autores/as: Travieso-González, Carlos M. 
Piñan Roescher, Alejandro 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Data Acquisition Frequencies
Deep Learning
Forecast
Prediction Horizon
Renewable Energy Forecasting, et al.
Fecha de publicación: 2023
Publicación seriada: Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics)
Conferencia: 17th International Work-Conference on Artificial Neural Networks, IWANN 2023
Resumen: This study aims to develop and compare different AI systems for predicting solar radiation and evaluate their performance across different prediction horizons. Predicting solar radiation is of crucial importance for harnessing renewable energy sources. The models were designed to predict radiation over 6-h and 15-min horizons with the lowest possible error. The impact of prediction horizon and data acquisition frequency on prediction accuracy is discussed, emphasizing the need to consider the number of parameters and training time when comparing models. To improve the accuracy of short-term solar radiation predictions, five deep learning models, including classical, convolutional, and recurrent neural networks, were analyzed. The accuracy of the predictions was compared using two error metrics: root mean square error and mean absolute error.
URI: http://hdl.handle.net/10553/129252
ISBN: 9783031430848
ISSN: 0302-9743
DOI: 10.1007/978-3-031-43085-5_51
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 14134 LNCS, p. 638-653, (Enero 2023)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.