Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129251
Título: Prospective Comparison of SURF and Binary Keypoint Descriptors for Fast Hyperspectral Remote Sensing Registration
Autores/as: Rodriguez Molina, Adrian 
Ordonez, Alvaro
Heras, Dora B.
Arguello, Francisco
López, José F. 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Binary Descriptor
Hyperspectral
Multi-Spectral
Openmp
Registration
Fecha de publicación: 2023
Publicación seriada: IEEE International Geoscience and Remote Sensing Symposium proceedings 
Conferencia: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 
Resumen: Image registration is a crucial process that involves determining the geometric transformation required to align multiple images. It plays a vital role in various remote sensing image processing tasks that involve analyzing changes among images. To enable real-time response, it is essential to have computationally efficient registration algorithms, especially when dealing with large datasets as is the case of hyperspectral images. This article presents a comparative analysis of two descriptors used to characterize local features of images prior to their matching and registration. The objective is to analyze whether the LATCH binary keypoint descriptor, which produces compact descriptors, provides similar results to the gradient-based SURF descriptor in terms of execution time and registration precision. To obtain the best computational performance, multithreaded implementations using OpenMP have been proposed. LATCH has proven to be 7× faster and as reliable as SURF in terms of accuracy on scale differences of up to 1.2×.
URI: http://hdl.handle.net/10553/129251
ISBN: 9798350320107
ISSN: 2153-6996
DOI: 10.1109/IGARSS52108.2023.10281734
Fuente: International Geoscience and Remote Sensing Symposium (IGARSS)[EISSN ],v. 2023-July, p. 704-707, (Enero 2023)
Colección:Actas de congresos
Adobe PDF (1,14 MB)
Vista completa

Visitas

62
actualizado el 18-may-2024

Descargas

16
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.