Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129194
Título: Modeling citation concentration through a mixture of Leimkuhler curves
Autores/as: Gómez Déniz, Emilio 
Dorta González, Pablo 
Clasificación UNESCO: 570106 Documentación
Palabras clave: Concentration Measurement
Inequality Measurement
Leimkuhler Curve
Mixture
Power Distribution
Fecha de publicación: 2024
Proyectos: Evaluación Económicay Meta-Análisis: Soluciones Bayesianas en Economía de la Salud 
Publicación seriada: Journal Of Informetrics
Resumen: When a graphical representation of the cumulative percentage of total citations to articles, ordered from most cited to least cited, is plotted against the cumulative percentage of articles, we obtain a Leimkuhler curve. In this study, we noticed that standard Leimkuhler functions may not be sufficient to provide accurate fits to various empirical informetrics data. Therefore, we introduce a new approach to Leimkuhler curves by fitting a known probability density function to the initial Leimkuhler curve, taking into account the presence of a heterogeneity factor. As a significant contribution to the existing literature, we introduce a pair of mixture distributions (called PG and PIG) to bibliometrics. In addition, we present closed-form expressions for Leimkuhler curves. Some measures of citation concentration are examined empirically for the basic models (based on the Power and Pareto distributions) and the mixed models derived from these. An application to two sources of informetric data was conducted to see how the mixing models outperform the standard basic models. The different models were fitted using non-linear least squares estimation.
URI: http://hdl.handle.net/10553/129135
http://hdl.handle.net/10553/129194
ISSN: 1751-1577
DOI: 10.1016/j.joi.2024.101519
Fuente: Journal of Informetrics[ISSN 1751-1577],v. 18 (2), (Mayo 2024)
Colección:Artículos
Unknown (785,23 kB)
Vista completa

Visitas

99
actualizado el 29-jun-2024

Descargas

82
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.