Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129027
Título: Modeling Sentence Comprehension Deficits in Aphasia: A Computational Evaluation of the Direct-access Model of Retrieval
Autores/as: Lissón Hernández, Paula José 
Pregla, D.
Paape, D.
Burchert, F.
Stadie, N.
Vasishth, S.
Clasificación UNESCO: 57 Lingüística
Fecha de publicación: 2021
Editor/a: Association for Computational Linguistics
Conferencia: Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2021) 
Resumen: Several researchers have argued that sentence comprehension is mediated via a content-addressable retrieval mechanism that allows fast and direct access to memory items. Initially failed retrievals can result in backtracking, which leads to correct retrieval. We present an augmented version of the direct-access model that allows backtracking to fail. Based on self-paced listening data from individuals with aphasia, we compare the augmented model to the base model without backtracking failures. The augmented model shows quantitatively similar performance to the base model, but only the augmented model can account for slow incorrect responses. We argue that the modified direct-access model is theoretically better suited to fit data from impaired populations.
URI: http://hdl.handle.net/10553/129027
ISBN: 978-1-954085-35-0
DOI: 10.18653/v1/2021.cmcl-1.22
Fuente: Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics / Emmanuele Chersoni, Nora Hollenstein, Cassandra Jacobs, Yohei Oseki, Laurent Prévot, Enrico Santus (eds.), p. 177-185
URL: https://aclanthology.org/2021.cmcl-1.22
Colección:Actas de congresos
Adobe PDF (1,04 MB)
Vista completa

Visitas

70
actualizado el 03-ago-2024

Descargas

30
actualizado el 03-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.