Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128641
Título: Application of fuzzy and conventional forecasting techniques to predict energy consumption in buildings
Autores/as: Cabrera Rodriguez, Axel 
B. Ruiz, L. G.
Criado-Ramon, D.
Barranco, C. D.
Pegalajar, M. C.
Coordinadores/as, Directores/as o Editores/as: Li, Jin
Clasificación UNESCO: 120317 Informática
Fecha de publicación: 2023
Publicación seriada: International Journal of Intelligent Systems 
Resumen: This paper presents the implementation and analysis of two approaches (fuzzy and conventional). Using hourly data from buildings at the University of Granada, we have examined their electricity demand and designed a model to predict energy consumption. Our proposal was conducted with the aid of time series techniques as well as the combination of artificial neural networks and clustering algorithms. Both approaches proved to be suitable for energy modelling although nonfuzzy models provided more variability and less robustness than fuzzy ones. Despite the relatively small difference between fuzzy and nonfuzzy estimates, the results reported in this study show that the fuzzy solution may be useful to enhance and enrich energy predictions.
URI: http://hdl.handle.net/10553/128641
ISSN: 0884-8173
DOI: 10.1155/2023/4391555
Fuente: International Journal of Intelligent Systems, vol. 2023, Article ID 4391555 (2023)
Colección:Artículos
Adobe PDF (846,34 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.