Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127978
Título: Managing score heterogeneity between online consumer review websites
Autores/as: Martel Escobar, María Carmen 
González Martel, Cristian 
Vázquez-Polo, Francisco Jose 
Clasificación UNESCO: 531290 Economía sectorial: turismo
Palabras clave: Customer Satisfaction
Tourism
Hospitality
Booking.Com
Performance, et al.
Fecha de publicación: 2023
Publicación seriada: Cogent Social Sciences 
Resumen: This paper describes an alternative approach to measuring score heterogeneity between online consumer review websites. This topic is important in tourism management and in the hospitality sector, where it is helpful to be aware of the ratings obtained by services, from information readily available on the website. We approach this issue by considering tests of multiple population means, assuming this question can be viewed as a clustering problem and that all feasible data configurations can be tested using a Bayesian procedure from which the posterior probabilities of each cluster model are computed. The proposed Bayesian model is a useful alternative to frequentist multiple testing methods, which neglect uncertainty regarding other potential configurations. We draw conclusions about the overall score parameter and propose a Bayesian model averaging model for estimation purposes. Finally, the proposed Bayesian framework is illustrated in detail using a real dataset.
URI: http://hdl.handle.net/10553/127978
ISSN: 2331-1886
DOI: 10.1080/23311886.2023.2267261
Fuente: Cogent Social Sciences [ISSN 2331-1886], v. 9 (2), (Diciembre 2023)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 24-nov-2024

Visitas

37
actualizado el 02-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.