Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/127433
Título: | Automatic control of class weights in the semantic segmentation of corrosion compounds on archaeological artefacts | Autores/as: | Stoean, Ruxandra García Baez, Patricio Suárez Araujo, Carmen Paz Bacanin, Nebojsa Atencia, Miguel Stoean, Catalin |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Archaeology Class imbalance Deep learning Evolutionary algorithms Semantic segmentation, et al. |
Fecha de publicación: | 2023 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 17th International Work-Conference on Artificial Neural Networks, IWANN 2023 | Resumen: | The semantic segmentation for irregularly and not uniformly disposed patterns becomes even more difficult when the occurrence of categories is imbalanced within the images. One example is represented by heavily corroded artefacts in archaeological digs. The current study therefore proposes a weighted loss function within a deep learning architecture for semantic segmentation of corrosion compounds from microscopy images of archaeological objects, where the values for the class weights are generated via genetic algorithms. The fitness evaluation of individuals is the estimation that a surrogate of the deep learner gives concerning the segmentation accuracy. The obtained class weight values are compared to a random search through the space of potential configurations and another automated means to compute them, in terms of resulting model accuracy. | URI: | http://hdl.handle.net/10553/127433 | ISBN: | 978-3-031-43077-0 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-031-43078-7_38 | Fuente: | Advances in Computational Intelligence. IWANN 2023-Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743],v. 14135 LNCS, p. 467-478, (October 2023) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.