Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127433
Título: Automatic control of class weights in the semantic segmentation of corrosion compounds on archaeological artefacts
Autores/as: Stoean, Ruxandra
García Baez, Patricio 
Suárez Araujo, Carmen Paz 
Bacanin, Nebojsa
Atencia, Miguel
Stoean, Catalin
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Archaeology
Class imbalance
Deep learning
Evolutionary algorithms
Semantic segmentation, et al.
Fecha de publicación: 2023
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 17th International Work-Conference on Artificial Neural Networks, IWANN 2023
Resumen: The semantic segmentation for irregularly and not uniformly disposed patterns becomes even more difficult when the occurrence of categories is imbalanced within the images. One example is represented by heavily corroded artefacts in archaeological digs. The current study therefore proposes a weighted loss function within a deep learning architecture for semantic segmentation of corrosion compounds from microscopy images of archaeological objects, where the values for the class weights are generated via genetic algorithms. The fitness evaluation of individuals is the estimation that a surrogate of the deep learner gives concerning the segmentation accuracy. The obtained class weight values are compared to a random search through the space of potential configurations and another automated means to compute them, in terms of resulting model accuracy.
URI: http://hdl.handle.net/10553/127433
ISBN: 978-3-031-43077-0
ISSN: 0302-9743
DOI: 10.1007/978-3-031-43078-7_38
Fuente: Advances in Computational Intelligence. IWANN 2023-Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743],v. 14135 LNCS, p. 467-478, (October 2023)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.