Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/124323
Título: | Influence of seabed profile on the seismic response of monopile-supported offshore wind turbines including dynamic soil-structure interaction | Autores/as: | Rodríguez Galván, Eduardo Álamo, Guillermo M. Medina, Cristina Maeso, Orlando |
Clasificación UNESCO: | 332203 Generadores de energía | Palabras clave: | Kinematic Interaction Monopile Offshore Wind Turbines Seabed Profile Seismic Response, et al. |
Fecha de publicación: | 2023 | Publicación seriada: | Marine Structures | Resumen: | In this article, the seismic response of four different Offshore Wind Turbines (OWTs) from 5 to 15 MW, founded on monopiles embedded in homogeneous and non-homogeneous soil profiles with equivalent shear-wave velocities from 100 to 300 m/s is analysed. Two types of variable soil profiles with a semi-parabolic variation of the shear-wave velocity as depth increases are considered. The system seismic response under ten different accelerograms is computed through a finite element substructuring model in frequency domain. The foundation behaviour is obtained by a continuum model including kinematic and inertial interaction. Several models, in addition to that of rigid base condition, are considered to determine the influence of soil-structure interaction (SSI), as well as the contribution of each kinematic interaction (KI) factor. The seismic response of the OWTs is obtained in terms of maximum shear forces and bending moments at mudline level, as well as the acceleration amplification factor at hub level. It is found that the maximum response is produced when SSI is considered, including both the inertial and kinematic interaction. The differences arising due to the soil profile definition are shown to be mainly related to the rotational KI factor, which significantly affects the second vibration mode of the system. The largest responses are obtained for the homogeneous equivalent profile. | URI: | http://hdl.handle.net/10553/124323 | ISSN: | 0951-8339 | DOI: | 10.1016/j.marstruc.2023.103500 | Fuente: | Marine Structures [ISSN 0951-8339], v. 92, 103500, (Noviembre 2023) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
209
actualizado el 31-oct-2024
Descargas
138
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.