Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/124269
Título: | Integer Arithmetic Algorithm for Fundamental Frequency Identification of Oceanic Currents | Autores/as: | Montiel Caminos, Juan Hernandez-Gonzalez, Nieves G. Sosa González, Carlos Javier Montiel-Nelson, Juan A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Edge Computing Frequency Parameters Extraction Ocean Tides And Waves Offshore Aquaculture Infrastructures Underwater Sensors |
Fecha de publicación: | 2023 | Publicación seriada: | Sensors (Switzerland) | Resumen: | Underwater sensor networks play a crucial role in collecting valuable data to monitor offshore aquaculture infrastructures. The number of deployed devices not only impacts the bandwidth for a highly constrained communication environment, but also the cost of the sensor network. On the other hand, industrial and literature current meters work as raw data loggers, and most of the calculations to determine the fundamental frequencies are performed offline on a desktop computer or in the cloud. Belonging to the edge computing research area, this paper presents an algorithm to extract the fundamental frequencies of water currents in an underwater sensor network deployed in offshore aquaculture infrastructures. The target sensor node is based on a commercial ultra-low-power microcontroller. The proposed fundamental frequency identification algorithm only requires the use of an integer arithmetic unit. Our approach exploits the mathematical properties of the finite impulse response (FIR) filtering in the integer domain. The design and implementation of the presented algorithm are discussed in detail in terms of FIR tuning/coefficient selection, memory usage and variable domain for its mathematical formulation aimed at reducing the computational effort required. The approach is validated using a shallow water current model and real-world raw data from an offshore aquaculture infrastructure. The extracted frequencies have a maximum error below a 4%. | URI: | http://hdl.handle.net/10553/124269 | ISSN: | 1424-8220 | DOI: | 10.3390/s23146549 | Fuente: | Sensors[ISSN 1424-8220],v. 23 (14), (Julio 2023) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
41
actualizado el 31-oct-2024
Descargas
30
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.