Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124269
Título: Integer Arithmetic Algorithm for Fundamental Frequency Identification of Oceanic Currents
Autores/as: Montiel Caminos, Juan 
Hernandez-Gonzalez, Nieves G.
Sosa González, Carlos Javier 
Montiel-Nelson, Juan A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Edge Computing
Frequency Parameters Extraction
Ocean Tides And Waves
Offshore Aquaculture Infrastructures
Underwater Sensors
Fecha de publicación: 2023
Publicación seriada: Sensors (Switzerland) 
Resumen: Underwater sensor networks play a crucial role in collecting valuable data to monitor offshore aquaculture infrastructures. The number of deployed devices not only impacts the bandwidth for a highly constrained communication environment, but also the cost of the sensor network. On the other hand, industrial and literature current meters work as raw data loggers, and most of the calculations to determine the fundamental frequencies are performed offline on a desktop computer or in the cloud. Belonging to the edge computing research area, this paper presents an algorithm to extract the fundamental frequencies of water currents in an underwater sensor network deployed in offshore aquaculture infrastructures. The target sensor node is based on a commercial ultra-low-power microcontroller. The proposed fundamental frequency identification algorithm only requires the use of an integer arithmetic unit. Our approach exploits the mathematical properties of the finite impulse response (FIR) filtering in the integer domain. The design and implementation of the presented algorithm are discussed in detail in terms of FIR tuning/coefficient selection, memory usage and variable domain for its mathematical formulation aimed at reducing the computational effort required. The approach is validated using a shallow water current model and real-world raw data from an offshore aquaculture infrastructure. The extracted frequencies have a maximum error below a 4%.
URI: http://hdl.handle.net/10553/124269
ISSN: 1424-8220
DOI: 10.3390/s23146549
Fuente: Sensors[ISSN 1424-8220],v. 23 (14), (Julio 2023)
Colección:Artículos
Adobe PDF (1,94 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

41
actualizado el 31-oct-2024

Descargas

30
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.