Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/123137
Título: | A convolutional autoencoder and a neural gas model based on Bregman divergences for hierarchical color quantization | Autores/as: | Fernández-Rodríguez, José David Palomo, Esteban J. Benito-Picazo, Jesús Domínguez, Enrique López-Rubio, Ezequiel Ortega Zamorano, Francisco |
Palabras clave: | Clustering Color Quantization Convolutional Autoencoder Self-Organization |
Fecha de publicación: | 2023 | Publicación seriada: | Neurocomputing | Resumen: | Color quantization (CQ) is one of the most common and important procedures to be performed on digital images. In this paper, a new approach to hierarchical color quantization is described, presenting a novel neural network architecture integrated by a convolutional autoencoder and a Growing Hierarchical Bregman Neural Gas (GHBNG). GHBNG is a CQ algorithm that allows the compression of an image by choosing a reduced set of the most representative colors to generate a high-quality reproduction of the original image. In the technique proposed here, an autoencoder is used to translate the image into a latent representation with higher per-pixel dimensionality but reduced resolution, and GHBNG is then used to quantize it. Experimental results confirm the performance of this technique and its suitability for tasks related to color quantization. | URI: | http://hdl.handle.net/10553/123137 | ISSN: | 0925-2312 | DOI: | 10.1016/j.neucom.2023.126288 | Fuente: | Neurocomputing [ISSN 0925-2312], v. 544, 126288, (Agosto 2023) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 15-dic-2024
Visitas
87
actualizado el 31-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.