Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/123137
Título: A convolutional autoencoder and a neural gas model based on Bregman divergences for hierarchical color quantization
Autores/as: Fernández-Rodríguez, José David
Palomo, Esteban J.
Benito-Picazo, Jesús
Domínguez, Enrique
López-Rubio, Ezequiel
Ortega Zamorano, Francisco 
Palabras clave: Clustering
Color Quantization
Convolutional Autoencoder
Self-Organization
Fecha de publicación: 2023
Publicación seriada: Neurocomputing 
Resumen: Color quantization (CQ) is one of the most common and important procedures to be performed on digital images. In this paper, a new approach to hierarchical color quantization is described, presenting a novel neural network architecture integrated by a convolutional autoencoder and a Growing Hierarchical Bregman Neural Gas (GHBNG). GHBNG is a CQ algorithm that allows the compression of an image by choosing a reduced set of the most representative colors to generate a high-quality reproduction of the original image. In the technique proposed here, an autoencoder is used to translate the image into a latent representation with higher per-pixel dimensionality but reduced resolution, and GHBNG is then used to quantize it. Experimental results confirm the performance of this technique and its suitability for tasks related to color quantization.
URI: http://hdl.handle.net/10553/123137
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2023.126288
Fuente: Neurocomputing [ISSN 0925-2312], v. 544, 126288, (Agosto 2023)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

87
actualizado el 31-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.