Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/123137
Campo DC Valoridioma
dc.contributor.authorFernández-Rodríguez, José Daviden_US
dc.contributor.authorPalomo, Esteban J.en_US
dc.contributor.authorBenito-Picazo, Jesúsen_US
dc.contributor.authorDomínguez, Enriqueen_US
dc.contributor.authorLópez-Rubio, Ezequielen_US
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.date.accessioned2023-06-01T07:56:53Z-
dc.date.available2023-06-01T07:56:53Z-
dc.date.issued2023en_US
dc.identifier.issn0925-2312en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/123137-
dc.description.abstractColor quantization (CQ) is one of the most common and important procedures to be performed on digital images. In this paper, a new approach to hierarchical color quantization is described, presenting a novel neural network architecture integrated by a convolutional autoencoder and a Growing Hierarchical Bregman Neural Gas (GHBNG). GHBNG is a CQ algorithm that allows the compression of an image by choosing a reduced set of the most representative colors to generate a high-quality reproduction of the original image. In the technique proposed here, an autoencoder is used to translate the image into a latent representation with higher per-pixel dimensionality but reduced resolution, and GHBNG is then used to quantize it. Experimental results confirm the performance of this technique and its suitability for tasks related to color quantization.en_US
dc.languageengen_US
dc.relation.ispartofNeurocomputingen_US
dc.sourceNeurocomputing [ISSN 0925-2312], v. 544, 126288, (Agosto 2023)en_US
dc.subject.otherClusteringen_US
dc.subject.otherColor Quantizationen_US
dc.subject.otherConvolutional Autoencoderen_US
dc.subject.otherSelf-Organizationen_US
dc.titleA convolutional autoencoder and a neural gas model based on Bregman divergences for hierarchical color quantizationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2023.126288en_US
dc.identifier.scopus85159131473-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid56069403000-
dc.contributor.authorscopusid24776468300-
dc.contributor.authorscopusid57194569150-
dc.contributor.authorscopusid7103240379-
dc.contributor.authorscopusid6602352538-
dc.contributor.authorscopusid55791089500-
dc.identifier.eissn1872-8286-
dc.relation.volume544en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,815
dc.description.jcr5,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

2
actualizado el 30-mar-2025

Visitas

87
actualizado el 31-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.