Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/123137
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Fernández-Rodríguez, José David | en_US |
dc.contributor.author | Palomo, Esteban J. | en_US |
dc.contributor.author | Benito-Picazo, Jesús | en_US |
dc.contributor.author | Domínguez, Enrique | en_US |
dc.contributor.author | López-Rubio, Ezequiel | en_US |
dc.contributor.author | Ortega Zamorano, Francisco | en_US |
dc.date.accessioned | 2023-06-01T07:56:53Z | - |
dc.date.available | 2023-06-01T07:56:53Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 0925-2312 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/123137 | - |
dc.description.abstract | Color quantization (CQ) is one of the most common and important procedures to be performed on digital images. In this paper, a new approach to hierarchical color quantization is described, presenting a novel neural network architecture integrated by a convolutional autoencoder and a Growing Hierarchical Bregman Neural Gas (GHBNG). GHBNG is a CQ algorithm that allows the compression of an image by choosing a reduced set of the most representative colors to generate a high-quality reproduction of the original image. In the technique proposed here, an autoencoder is used to translate the image into a latent representation with higher per-pixel dimensionality but reduced resolution, and GHBNG is then used to quantize it. Experimental results confirm the performance of this technique and its suitability for tasks related to color quantization. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Neurocomputing | en_US |
dc.source | Neurocomputing [ISSN 0925-2312], v. 544, 126288, (Agosto 2023) | en_US |
dc.subject.other | Clustering | en_US |
dc.subject.other | Color Quantization | en_US |
dc.subject.other | Convolutional Autoencoder | en_US |
dc.subject.other | Self-Organization | en_US |
dc.title | A convolutional autoencoder and a neural gas model based on Bregman divergences for hierarchical color quantization | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.neucom.2023.126288 | en_US |
dc.identifier.scopus | 85159131473 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 56069403000 | - |
dc.contributor.authorscopusid | 24776468300 | - |
dc.contributor.authorscopusid | 57194569150 | - |
dc.contributor.authorscopusid | 7103240379 | - |
dc.contributor.authorscopusid | 6602352538 | - |
dc.contributor.authorscopusid | 55791089500 | - |
dc.identifier.eissn | 1872-8286 | - |
dc.relation.volume | 544 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Agosto 2023 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 1,815 | |
dc.description.jcr | 5,5 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 11,0 | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.orcid | 0000-0002-4397-2905 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Ortega Zamorano,Francisco | - |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 30-mar-2025
Visitas
87
actualizado el 31-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.