Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/123137
DC FieldValueLanguage
dc.contributor.authorFernández-Rodríguez, José Daviden_US
dc.contributor.authorPalomo, Esteban J.en_US
dc.contributor.authorBenito-Picazo, Jesúsen_US
dc.contributor.authorDomínguez, Enriqueen_US
dc.contributor.authorLópez-Rubio, Ezequielen_US
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.date.accessioned2023-06-01T07:56:53Z-
dc.date.available2023-06-01T07:56:53Z-
dc.date.issued2023en_US
dc.identifier.issn0925-2312en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/123137-
dc.description.abstractColor quantization (CQ) is one of the most common and important procedures to be performed on digital images. In this paper, a new approach to hierarchical color quantization is described, presenting a novel neural network architecture integrated by a convolutional autoencoder and a Growing Hierarchical Bregman Neural Gas (GHBNG). GHBNG is a CQ algorithm that allows the compression of an image by choosing a reduced set of the most representative colors to generate a high-quality reproduction of the original image. In the technique proposed here, an autoencoder is used to translate the image into a latent representation with higher per-pixel dimensionality but reduced resolution, and GHBNG is then used to quantize it. Experimental results confirm the performance of this technique and its suitability for tasks related to color quantization.en_US
dc.languageengen_US
dc.relation.ispartofNeurocomputingen_US
dc.sourceNeurocomputing [ISSN 0925-2312], v. 544, 126288, (Agosto 2023)en_US
dc.subject.otherClusteringen_US
dc.subject.otherColor Quantizationen_US
dc.subject.otherConvolutional Autoencoderen_US
dc.subject.otherSelf-Organizationen_US
dc.titleA convolutional autoencoder and a neural gas model based on Bregman divergences for hierarchical color quantizationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2023.126288en_US
dc.identifier.scopus85159131473-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid56069403000-
dc.contributor.authorscopusid24776468300-
dc.contributor.authorscopusid57194569150-
dc.contributor.authorscopusid7103240379-
dc.contributor.authorscopusid6602352538-
dc.contributor.authorscopusid55791089500-
dc.identifier.eissn1872-8286-
dc.relation.volume544en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,815
dc.description.jcr5,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

2
checked on Jun 8, 2025

Page view(s)

87
checked on Aug 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.