Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/123120
Título: Investigating Keystroke Dynamics and Their Relevance for Real-Time Emotion Recognition
Autores/as: Maalej, Aicha
Kallel, Ilhem
Sánchez Medina, Javier J. 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Keystroke dynamics
Emotion recognition
Affective computing
Machine learning
Fecha de publicación: 2023
Publicación seriada: SSRN
Resumen: There is strong evidence that emotional states affect the Human’s performance and decision making. Therefore, understanding Human emotions has become of great concern in the field of Human Computer Interaction (HCI). One way to online emotion recognition is through Keystroke Dynamics. It addresses the drawbacks of current methods which are intrusive and not user-friendly, expensive to implement, and neither realistic nor applicable in a real-world context. The keystroke dynamics approach focuses on analyzing the particular way a person types on a keyboard. In our research work, we start by developing a web application (EmoSurv) in order to collect the data and build a dataset. We generate datasets for free-text and fixed-text entries. These datasets are labeled with emotional states of the participants (Angry, Happy, Sad, Calm, and Neutral state). The obtained datasets are used for training and building models using machine learning algorithms. Outstanding accuracy rates are obtained reaching 93.922% and Kappa equal to 0.9197 using Random Committee algorithm. We finally provide a set of recommendations for future experimentation by comparing the different models generated.
URI: http://hdl.handle.net/10553/123120
DOI: 10.2139/ssrn.4250964
Colección:Artículos
Adobe PDF (774,11 kB)
Vista completa

Visitas

68
actualizado el 31-ago-2024

Descargas

92
actualizado el 31-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.