Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/123120
DC FieldValueLanguage
dc.contributor.authorMaalej, Aichaen_US
dc.contributor.authorKallel, Ilhemen_US
dc.contributor.authorSánchez Medina, Javier J.en_US
dc.date.accessioned2023-05-31T12:25:57Z-
dc.date.available2023-05-31T12:25:57Z-
dc.date.issued2023en_US
dc.identifier.urihttp://hdl.handle.net/10553/123120-
dc.description.abstractThere is strong evidence that emotional states affect the Human’s performance and decision making. Therefore, understanding Human emotions has become of great concern in the field of Human Computer Interaction (HCI). One way to online emotion recognition is through Keystroke Dynamics. It addresses the drawbacks of current methods which are intrusive and not user-friendly, expensive to implement, and neither realistic nor applicable in a real-world context. The keystroke dynamics approach focuses on analyzing the particular way a person types on a keyboard. In our research work, we start by developing a web application (EmoSurv) in order to collect the data and build a dataset. We generate datasets for free-text and fixed-text entries. These datasets are labeled with emotional states of the participants (Angry, Happy, Sad, Calm, and Neutral state). The obtained datasets are used for training and building models using machine learning algorithms. Outstanding accuracy rates are obtained reaching 93.922% and Kappa equal to 0.9197 using Random Committee algorithm. We finally provide a set of recommendations for future experimentation by comparing the different models generated.en_US
dc.languageengen_US
dc.relation.ispartofSSRNen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherKeystroke dynamicsen_US
dc.subject.otherEmotion recognitionen_US
dc.subject.otherAffective computingen_US
dc.subject.otherMachine learningen_US
dc.titleInvestigating Keystroke Dynamics and Their Relevance for Real-Time Emotion Recognitionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.2139/ssrn.4250964en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Appears in Collections:Artículos
Adobe PDF (774,11 kB)
Show simple item record

Page view(s)

17
checked on Dec 9, 2023

Download(s)

9
checked on Dec 9, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.