Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/123092
Título: | Glycolysis, monocarboxylate transport, and purinergic signaling are key events in Eimeria bovis-induced NETosis | Autores/as: | Conejeros, Iván López-Osorio, Sara Zhou, Ershun Velásquez, Zahady D. Del Río Gismero, María Cristina Agustín Burgos, Rafael Alarcón, Pablo Chaparro-Gutiérrez, Jenny Jovana Hermosilla, Carlos Taubert, Anja |
Clasificación UNESCO: | 32 Ciencias médicas 3207 Patología 320710 Inmunopatología 3109 Ciencias veterinarias |
Palabras clave: | Eimeria bovis PMN Immunometabolism NET formation Cattle, et al. |
Fecha de publicación: | 2022 | Publicación seriada: | Frontiers in Immunology | Resumen: | The protozoan parasite Eimeria bovis is the causative agent of bovine coccidiosis, an enteric disease of global importance that significantly affects cattle productivity. Previous studies showed that bovine NETosis—an important early host innate effector mechanism of polymorphonuclear neutrophil (PMN)—is elicited by E. bovis stages. So far, the metabolic requirements of E. bovis-triggered NET formation are unknown. We here studied early glycolytic and mitochondrial responses of PMN as well as the role of pH, distinct metabolic pathways, P2 receptor-mediated purinergic signaling, and monocarboxylate transporters 1 and 2 (MCT1, MCT2) in E. bovis sporozoite-induced NET formation. Seahorse-based experiments revealed a rapid induction of both neutrophil oxygen consumption rate (OCR) and early glycolytic responses, thereby reflecting immediate PMN activation and metabolic changes upon confrontation with sporozoites. The impact of these metabolic changes on NET formation was studied via chemical inhibition experiments targeting glycolysis and energy generation by the use of 2-fluor-2-deoxy-D-glucose (FDG), 6-diazo-5-oxo-L-norleucin (DON), sodium dichloroacetate (DCA), oxythiamine (OT), sodium oxamate (OXA), and oligomycin A (OmA) to block glycolysis, glutaminolysis, pyruvate dehydrogenase kinase, pyruvate dehydrogenase, lactate dehydrogenase, and mitochondrial ATP-synthase, respectively. Overall, sporozoite-induced NET formation was significantly diminished via PMN pretreatments with OmA and OXA, thereby indicating a key role of ATP- and lactate-mediated metabolic pathways. Consequently, we additionally studied the effects of extracellular pH, MCT1, MCT2, and purinergic receptor inhibitors (AR-C141900, AR-C155858, theobromine, and NF449, respectively). Pretreatment with the latter inhibitors led to blockage of sporozoite-triggered DNA release from exposed bovine PMN. This report provides first evidence on the pivotal role of carbohydrate-related metabolic pathways and purinergic receptors being involved in E. bovis sporozoite-induced NETosis. | URI: | http://hdl.handle.net/10553/123092 | ISSN: | 1664-3224 | DOI: | 10.3389/fimmu.2022.842482 | Fuente: | Frontiers in Immunology [1664-3224], v. 13: 842482 (Agosto 2022) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 17-nov-2024
Visitas
44
actualizado el 06-jul-2024
Descargas
31
actualizado el 06-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.