Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121639
Título: Genetic algorithms: A stochastic improvement technique. Tools, skills, pitfalls and examples
Autores/as: Winter Althaus, Gabriel 
Galán, M
Cuesta Moreno, Pedro Damián 
Greiner Sánchez, David Juan 
Clasificación UNESCO: 2409 Genética
Fecha de publicación: 1995
Editor/a: John Wiley and Sons
Resumen: In this chapter we try to show an introductory study addressed, mainly, to the postgraduate student. Because oí the extention and multiple branches of this stochastic technique, our proposal has been to provide a simplified panoramic view o~ the Genetic Algorithms field (GAs). / To begin with, we intent to mostrate sorne results, tools, and references in order to give an approximation to the "state of the art"; therefore we will start with a description of the main aspects and operators of GAs. Creativity and innovation are strong features in the field of GAs which are, sometimes, more an art than a science as they strongly depend on severa! 'fine tune' parameters which play a decissive role in the algorithm success. On the other hand we present severa! examples of the application of GAs in sorne simple test cases, including sorne new proposals, and finally we comment on our experiences with this "improvement" algorithm applied to severa! problems.
URI: http://hdl.handle.net/10553/121639
ISBN: 9780471958598
Fuente: Genetic Algorithms in Engineering and Computer Science
Colección:Capítulo de libro
Vista completa

Visitas

48
actualizado el 03-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.