Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121013
Título: Maritime Surveillance by Multiple Data Fusion: An Application Based on Deep Learning Object Detection, AIS Data and Geofencing
Autores/as: Ballines Barrera, Sergio 
López Reverón, Leopoldo 
Santana-Cedrés, Daniel 
Monzón López, Nelson Manuel 
Clasificación UNESCO: 3304 Tecnología de los ordenadores
Palabras clave: Object Detection
AIS
PTZ cameras
Deep Learning
Geofencing, et al.
Fecha de publicación: 2023
Editor/a: SciTePress Digital Library 
Proyectos: "A la ULPGC para análisis matemático de imágenes por CTIM" 
Conferencia: 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) 
Resumen: Marine traffic represents one of the critical points in coastal monitoring. This task has been eased by the development of Automatic Identification Systems (AIS), which allow ship recognition. However, AIS technology is not mandatory for all vessels, so there is a need for using alternative techniques to identify and track them. In this paper, we present the integration of several technologies. First, we perform ship detection by using different camera-based approaches, depending on the moment of the day (daytime or nighttime). From this detection, we estimate the vessel’s georeferenced position. Secondly, this estimation is combined with the information provided by AIS devices. We obtain a correspondence between the scene and the AIS data and we also detect ships without VHF transmitters. Together with a geofencing technique, we introduce a solution that fuses data from different sources, providing useful information for decision-making regarding the presence of vessels in near-shore locations.
URI: http://hdl.handle.net/10553/121013
ISBN: 978-989-758-634-7
ISSN: 2184-4321
DOI: 10.5220/0011670100003417
Fuente: Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4, p. 846-855
Colección:Actas de congresos
Adobe PDF (21,28 MB)
Vista completa

Visitas

522
actualizado el 13-abr-2024

Descargas

175
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.