Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120494
Título: Geometric Method: A Novel, Fast and Accurate Solution for the Inverse Problem in Risley Prisms
Autores/as: Sandoval González, Juan Domingo 
Delgado Morales, Keyla 
Fariña Santana, Esteban David 
de la Puente, Fernando 
Esper-Chaín Falcón, Roberto 
Marrero-Martín, Margarita 
Clasificación UNESCO: 220910 Láseres
Palabras clave: Geometrical optics
Inverse solution
Risley prism
Rotational wedges
Fecha de publicación: 2022
Publicación seriada: Applied Sciences (Basel) 
Resumen: Today, mechanical tracking systems are becoming increasingly compact, enabling a new range of civil and military applications. These include aerial laser scanning, for which Risley prisms are used. In Risley systems, the so-called inverse problem, which focuses on obtaining the angles of the prisms for a given target coordinate, has not yet been solved mathematically. As a consequence, approximate approaches have been used, but the solutions obtained have significant errors and a lack of precision. To improve accuracy, iterative methods, which are computationally intensive, have also been implemented. In this paper, an analytical process which we call the geometric method is presented, and we verified that this strategy highly improves accuracy and computational speed. Using this method in an iterative process gives accuracies of up to 1 pm in only three iterations. This high accuracy would allow the geometric method to be applied in fields such as lithography, stereolithography, or 3D printing.
URI: http://hdl.handle.net/10553/120494
ISSN: 2076-3417
DOI: 10.3390/app122111087
Fuente: Applied Sciences (Switzerland) [EISSN 2076-3417], v. 12 (21), 11087, (Noviembre 2022)
Colección:Artículos
Adobe PDF (2,86 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.