Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120494
Campo DC Valoridioma
dc.contributor.authorSandoval González, Juan Domingoen_US
dc.contributor.authorDelgado Morales, Keylaen_US
dc.contributor.authorFariña Santana, Esteban Daviden_US
dc.contributor.authorde la Puente, Fernandoen_US
dc.contributor.authorEsper-Chaín Falcón, Robertoen_US
dc.contributor.authorMarrero-Martín, Margaritaen_US
dc.date.accessioned2023-02-14T11:21:40Z-
dc.date.available2023-02-14T11:21:40Z-
dc.date.issued2022en_US
dc.identifier.issn2076-3417en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/120494-
dc.description.abstractToday, mechanical tracking systems are becoming increasingly compact, enabling a new range of civil and military applications. These include aerial laser scanning, for which Risley prisms are used. In Risley systems, the so-called inverse problem, which focuses on obtaining the angles of the prisms for a given target coordinate, has not yet been solved mathematically. As a consequence, approximate approaches have been used, but the solutions obtained have significant errors and a lack of precision. To improve accuracy, iterative methods, which are computationally intensive, have also been implemented. In this paper, an analytical process which we call the geometric method is presented, and we verified that this strategy highly improves accuracy and computational speed. Using this method in an iterative process gives accuracies of up to 1 pm in only three iterations. This high accuracy would allow the geometric method to be applied in fields such as lithography, stereolithography, or 3D printing.en_US
dc.languageengen_US
dc.relation.ispartofApplied Sciences (Basel)en_US
dc.sourceApplied Sciences (Switzerland) [EISSN 2076-3417], v. 12 (21), 11087, (Noviembre 2022)en_US
dc.subject220910 Láseresen_US
dc.subject.otherGeometrical opticsen_US
dc.subject.otherInverse solutionen_US
dc.subject.otherRisley prismen_US
dc.subject.otherRotational wedgesen_US
dc.titleGeometric Method: A Novel, Fast and Accurate Solution for the Inverse Problem in Risley Prismsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app122111087en_US
dc.identifier.scopus2-s2.0-85141828438-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-4976-3899-
dc.contributor.orcid0000-0002-1995-0335-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-0861-9954-
dc.contributor.authorscopusid57964194100-
dc.contributor.authorscopusid57963466000-
dc.contributor.authorscopusid7004908028-
dc.contributor.authorscopusid7801412743-
dc.contributor.authorscopusid6602504574-
dc.contributor.authorscopusid57963646300-
dc.identifier.eissn2076-3417-
dc.identifier.issue21-
dc.relation.volume12en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Collection Optical Design and Engineeringen_US
dc.utils.revisionen_US
dc.date.coverdateNoviembre 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,492
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-1711-9572-
crisitem.author.orcid0000-0002-4976-3899-
crisitem.author.orcid0000-0002-1995-0335-
crisitem.author.orcid0000-0001-8724-0266-
crisitem.author.orcid0000-0002-8381-969X-
crisitem.author.orcid0000-0002-0861-9954-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameSandoval González, Juan Domingo-
crisitem.author.fullNameDelgado Morales,Keyla-
crisitem.author.fullNameFariña Santana,Esteban David-
crisitem.author.fullNameDe La Puente Arrate, Fernando-
crisitem.author.fullNameEsper-Chaín Falcón, Roberto-
crisitem.author.fullNameMarrero Martín, Margarita Luisa-
Colección:Artículos
Adobe PDF (2,86 MB)
Vista resumida

Citas SCOPUSTM   

3
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 30-mar-2025

Visitas

73
actualizado el 05-oct-2024

Descargas

53
actualizado el 05-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.