Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120344
Título: iDeLog3D: Sigma-Lognormal Analysis of 3DHuman Movements
Autores/as: Ferrer Ballester, Miguel Ángel 
Diaz, Moises 
Carmona-Duarte, Cristina 
Quintana Hernández, José Juan 
Plamondon, Réjean
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Analysis Of Human 3D Movements
Biometrics
Kinematic Theory Of Rapid Human Movements
Modeling 3D Human Actions
Fecha de publicación: 2022
Editor/a: SPRINGER INTERNATIONAL PUBLISHING AG
Proyectos: Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 20th International Conference of the International Graphonomics Society (Las Palmas de Gran Canaria. 2022)
Resumen: This paper proposes a 3D representation of human kinematics with the Kinematic Theory of Rapid Human Movements and its associated Sigma-Lognormal model. Based on the lognormality principle, a human movement is decomposed as a vector sum of temporally overlapped simple movements called strokes, described as two virtual target points linked by an arc of circumference and with the movement velocity having a lognormal shape. The paper extends the former 2D theory to the third dimension by linking the 3D virtual target points with planar circumferences covered with lognormal velocity profiles and reconstructing the 3D kinematics of the whole movement with temporally overlapping consecutive planes. Parameter optimization is accomplished jointly in the temporal and spatial domains. Moreover, the lognormal parameters used are numerically estimated, potentially providing a set of possible solutions that gain insights into the physical and biological meanings of the Sigma-Lognormal model parameters. We show that the 3D model, called iDeLog3D, achieves competitive results in analyzing the kinematics of multiple human movements recorded by various sensors at different sampling rates. The iDeLog3D is available to the scientific community following license agreements.
URI: http://hdl.handle.net/10553/120344
ISBN: 9783031197444
ISSN: 0302-9743
DOI: 10.1007/978-3-031-19745-1_14
Fuente: Lecture Notes in Computer Science (subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 13424 LNCS, p. 189-202, (Enero 2022)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.