Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/119851
Título: | Anthropometric and body composition equations to predict resting energy expenditure in overweight and obese men and women living in a temperate climate | Autores/as: | Galván Álvarez, Víctor Perez Valera, Mario Curtelin, David Morales Álamo, David Gelabert-Rebato, Miriam De Pablos Velasco, Pedro Luis López Calbet, José Antonio Martín Rincón, Marcos |
Clasificación UNESCO: | 241106 Fisiología del ejercicio | Fecha de publicación: | 2020 | Proyectos: | Viabilidad y sostenibilidad del adelgazamiento mediante tratamiento intensificado en pacientes con sobrepeso u obesidad: mecanismos neuroendocrinos y moleculares Estudio longitudinal de los efectos de una modificación intensiva del estilo de vida en la composición corporal e indicadores bioquímicos y moleculares de salud en pacientes con sobrepeso y obesidad: aplicación para la evaluación fisiológica de rutas y sistemas de monitorización del esfuerzo ... |
Conferencia: | 25th Annual Congress of the European College of Sport Science (ECSS 2020) | Resumen: | The resting energy expenditure (REE) is commonly determined by indirect calorimetry. However, in clinical and nutrition settings, it is usually unfeasible and thus prediction equations are employed using anthropometric (ANT) and/or body composition (BC) data. Epidemiological evidence has shown an association between ambient temperature and body weight in humans, and particularly high prevalence of obesity when living in temperate climates. The aim was to develop equations to predict REE of overweight and obese living in a temperate climate all-year round and to determine the accuracy of traditional equations in this population. METHODS: Overweight and obese men and women (n=174) living permanently in Gran Canaria agreed to participate (age: 18-70 yr; BMI>27 kg.m2). REE was measured in fasting conditions by indirect calorimetry (Vmax N29). For anthropometric assessment, body weight and height were measured with a balance scale while body composition by DXA. Stepwise multiple regression analysis was used to determine the best predictors of REE in our population by two models (ANT and BC-based). The agreement of our measured REE was compared to the estimation by 20 widely employed ANT-based equations by calculating: bias (absolute values and %), the limit of agreement (LA) (upper LA=bias+1.96xSD; lower LA=bias-1.96xSD), concordance correlation coefficient (CCC). The % of subjects whose predicted REE fell within 10% of the measured REE was taken as a measure of accuracy. Statistical significance was set at p<0.05. | URI: | http://hdl.handle.net/10553/119851 | ISBN: | 9783981841435 | Fuente: | 25th Annual Congress of the European College of Sport Science (ECSS 2020) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.