Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/119057
Título: | Reducing Data Dependencies in the Feedback Loop of the CCSDS 123.0-B-2 Predictor | Autores/as: | Sanchez Clemente, A. J. Blanes, Ian Barrios Alfaro, Yubal Hernandez-Cabronero, Miguel Bartrina-Rapesta, Joan Serra-Sagrista, Joan Sarmiento Rodríguez, Roberto |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Ccsds 123.0-B-2 Compression Algorithms Feedback Loop Hardware Hyperspectral Imaging, et al. |
Fecha de publicación: | 2022 | Proyectos: | Lossless/lossy multispectral & hyperspectral compression IP core | Publicación seriada: | IEEE Geoscience and Remote Sensing Letters | Resumen: | On-board multi- and hyperspectral instruments acquire large volumes of data that need to be processed with the limited computational and storage resources. In this context, the CCSDS 123.0-B-2 standard emerges as an interesting option to compress multi- and hyperspectral images on-board satellites, supporting both lossless and near-lossless compression with low complexity and reduced power consumption. Nonetheless, the inclusion of a feedback loop in the CCSDS 123.0-B-2 predictor to support near-lossless compression introduces significant data dependencies that hinder real-time processing, particularly due to the presence of a quantization stage within this loop. This work provides an analysis of the aforementioned data dependencies and proposes two strategies aiming at maximizing throughput in hardware implementations and thus enabling real-time processing. In particular, through an elaborate mathematical derivation, the quantization stage is removed completely from the feedback loop. This reduces the critical path, which allows for shorter initiation intervals in a pipelined hardware implementation and higher throughput. This is achieved without any impact in the compression performance, which is identical to the one obtained by the original data flow of the predictor. | URI: | http://hdl.handle.net/10553/119057 | ISSN: | 1545-598X | DOI: | 10.1109/LGRS.2022.3213975 | Fuente: | IEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X], (Enero 2022) |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
40
actualizado el 02-mar-2024
Descargas
25
actualizado el 02-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.