Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119057
Título: Reducing Data Dependencies in the Feedback Loop of the CCSDS 123.0-B-2 Predictor
Autores/as: Sanchez Clemente, A. J. 
Blanes, Ian
Barrios Alfaro, Yubal 
Hernandez-Cabronero, Miguel
Bartrina-Rapesta, Joan
Serra-Sagrista, Joan
Sarmiento Rodríguez, Roberto 
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Ccsds 123.0-B-2
Compression Algorithms
Feedback Loop
Hardware
Hyperspectral Imaging, et al.
Fecha de publicación: 2022
Proyectos: Lossless/lossy multispectral & hyperspectral compression IP core 
Publicación seriada: IEEE Geoscience and Remote Sensing Letters 
Resumen: On-board multi- and hyperspectral instruments acquire large volumes of data that need to be processed with the limited computational and storage resources. In this context, the CCSDS 123.0-B-2 standard emerges as an interesting option to compress multi- and hyperspectral images on-board satellites, supporting both lossless and near-lossless compression with low complexity and reduced power consumption. Nonetheless, the inclusion of a feedback loop in the CCSDS 123.0-B-2 predictor to support near-lossless compression introduces significant data dependencies that hinder real-time processing, particularly due to the presence of a quantization stage within this loop. This work provides an analysis of the aforementioned data dependencies and proposes two strategies aiming at maximizing throughput in hardware implementations and thus enabling real-time processing. In particular, through an elaborate mathematical derivation, the quantization stage is removed completely from the feedback loop. This reduces the critical path, which allows for shorter initiation intervals in a pipelined hardware implementation and higher throughput. This is achieved without any impact in the compression performance, which is identical to the one obtained by the original data flow of the predictor.
URI: http://hdl.handle.net/10553/119057
ISSN: 1545-598X
DOI: 10.1109/LGRS.2022.3213975
Fuente: IEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X], (Enero 2022)
Colección:Artículos
Adobe PDF (370,11 kB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 17-nov-2024

Visitas

40
actualizado el 02-mar-2024

Descargas

25
actualizado el 02-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.