Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/118307
Título: Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application
Autores/as: La Salvia, Marco
Torti, Emanuele
León, Raquel 
Fabelo, Himar A. 
Ortega, Samuel 
Martínez Vega, Beatriz 
Callicó, Gustavo M. 
Leporati, Francesco
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Deep Convolutional Generative Adversarial Networks
Deep Learning
Hyperspectral Imaging
Medical Hyperspectral Images
Synthetic Data Generation
Fecha de publicación: 2022
Publicación seriada: Sensors (Switzerland) 
Resumen: In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable devices, smartphones, and other sensors employed in different medical domains. Conceived to serve the role of diagnostic tool and surgical guidance, hyperspectral images emerged as a non-contact, non-ionizing, and label-free technology. However, the lack of large datasets to efficiently train the models limits DL applications in the medical field. Hence, its usage with hyperspectral images is still at an early stage. We propose a deep convolutional generative adversarial network to generate synthetic hyperspectral images of epidermal lesions, targeting skin cancer diagnosis, and overcome small-sized datasets challenges to train DL architectures. Experimental results show the effectiveness of the proposed framework, capable of generating synthetic data to train DL classifiers.
URI: http://hdl.handle.net/10553/118307
DOI: 10.3390/s22166145
Fuente: Sensors (Basel, Switzerland)[EISSN 1424-8220],v. 22 (16), (Agosto 2022)
Colección:Artículos
Adobe PDF (2,86 MB)
Vista completa

Citas SCOPUSTM   

15
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

11
actualizado el 17-nov-2024

Visitas

83
actualizado el 15-jun-2024

Descargas

72
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.