Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/118307
Título: | Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application | Autores/as: | La Salvia, Marco Torti, Emanuele León, Raquel Fabelo, Himar A. Ortega, Samuel Martínez Vega, Beatriz Callicó, Gustavo M. Leporati, Francesco |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Deep Convolutional Generative Adversarial Networks Deep Learning Hyperspectral Imaging Medical Hyperspectral Images Synthetic Data Generation |
Fecha de publicación: | 2022 | Publicación seriada: | Sensors (Switzerland) | Resumen: | In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable devices, smartphones, and other sensors employed in different medical domains. Conceived to serve the role of diagnostic tool and surgical guidance, hyperspectral images emerged as a non-contact, non-ionizing, and label-free technology. However, the lack of large datasets to efficiently train the models limits DL applications in the medical field. Hence, its usage with hyperspectral images is still at an early stage. We propose a deep convolutional generative adversarial network to generate synthetic hyperspectral images of epidermal lesions, targeting skin cancer diagnosis, and overcome small-sized datasets challenges to train DL architectures. Experimental results show the effectiveness of the proposed framework, capable of generating synthetic data to train DL classifiers. | URI: | http://hdl.handle.net/10553/118307 | DOI: | 10.3390/s22166145 | Fuente: | Sensors (Basel, Switzerland)[EISSN 1424-8220],v. 22 (16), (Agosto 2022) |
Colección: | Artículos |
Citas SCOPUSTM
15
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
11
actualizado el 17-nov-2024
Visitas
83
actualizado el 15-jun-2024
Descargas
72
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.