Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/118307
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | La Salvia, Marco | en_US |
dc.contributor.author | Torti, Emanuele | en_US |
dc.contributor.author | León, Raquel | en_US |
dc.contributor.author | Fabelo, Himar A. | en_US |
dc.contributor.author | Ortega, Samuel | en_US |
dc.contributor.author | Martínez Vega, Beatriz | en_US |
dc.contributor.author | Callicó, Gustavo M. | en_US |
dc.contributor.author | Leporati, Francesco | en_US |
dc.date.accessioned | 2022-09-20T09:34:11Z | - |
dc.date.available | 2022-09-20T09:34:11Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/118307 | - |
dc.description.abstract | In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable devices, smartphones, and other sensors employed in different medical domains. Conceived to serve the role of diagnostic tool and surgical guidance, hyperspectral images emerged as a non-contact, non-ionizing, and label-free technology. However, the lack of large datasets to efficiently train the models limits DL applications in the medical field. Hence, its usage with hyperspectral images is still at an early stage. We propose a deep convolutional generative adversarial network to generate synthetic hyperspectral images of epidermal lesions, targeting skin cancer diagnosis, and overcome small-sized datasets challenges to train DL architectures. Experimental results show the effectiveness of the proposed framework, capable of generating synthetic data to train DL classifiers. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sensors (Switzerland) | en_US |
dc.source | Sensors (Basel, Switzerland)[EISSN 1424-8220],v. 22 (16), (Agosto 2022) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Deep Convolutional Generative Adversarial Networks | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Hyperspectral Imaging | en_US |
dc.subject.other | Medical Hyperspectral Images | en_US |
dc.subject.other | Synthetic Data Generation | en_US |
dc.title | Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s22166145 | en_US |
dc.identifier.scopus | 85136683924 | - |
dc.contributor.orcid | 0000-0003-3724-8213 | - |
dc.contributor.orcid | 0000-0001-8437-8227 | - |
dc.contributor.orcid | 0000-0002-4287-3200 | - |
dc.contributor.orcid | 0000-0002-9794-490X | - |
dc.contributor.orcid | 0000-0002-7519-954X | - |
dc.contributor.orcid | 0000-0001-7835-9660 | - |
dc.contributor.orcid | 0000-0002-3784-5504 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57223922393 | - |
dc.contributor.authorscopusid | 56091390500 | - |
dc.contributor.authorscopusid | 57212456639 | - |
dc.contributor.authorscopusid | 56405568500 | - |
dc.contributor.authorscopusid | 57189334144 | - |
dc.contributor.authorscopusid | 57218919933 | - |
dc.contributor.authorscopusid | 56006321500 | - |
dc.contributor.authorscopusid | 55937698500 | - |
dc.identifier.eissn | 1424-8220 | - |
dc.identifier.issue | 16 | - |
dc.relation.volume | 22 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Agosto 2022 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,764 | |
dc.description.jcr | 3,847 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,8 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Telemática | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-4287-3200 | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0001-7835-9660 | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | León Martín,Sonia Raquel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Martínez Vega, Beatriz | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
Colección: | Artículos |
Citas SCOPUSTM
21
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
14
actualizado el 30-mar-2025
Visitas
83
actualizado el 15-jun-2024
Descargas
72
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.