Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/115020
Título: Almost contact submersions with total space a locally conformal cosymplectic manifold
Autores/as: Chinea, D
Marrero, J. C
Rocha Martín, Juan 
Clasificación UNESCO: 120404 Geometría diferencial
Palabras clave: Cosymplectic manifolds
Locally conformal cosymplectic manifolds
PC-manifolds
Submersions
Almost contact metric submersions, et al.
Fecha de publicación: 1996
Publicación seriada: Annales de la Faculté des sciences de Toulouse : Mathématiques 
Resumen: In this paper we study almost contact metric submersions with total space a locally conformal cosymplectic manifold. We obtain some results on the minimality of the fibers, transference of the In this paper we study almost contact metric submersions with total space a locally conformal cosymplectic manifold. We obtain some results on the minimality of the fibers, transference of the almost contact metric structure to the base manifold, the induced structure on the fibers, and on the integrability of the horizontal distribution. We obtain the local model of locally conformal cosymplectic submersion with totally umbilical fibers and we show that the total space of a locally conformal cosymplectic submersion cannot be a PC-manifold (i.e. a particular class of locally conformal cosymplectic manifold which is foliated by generalized Hopf manifolds). Although, we obtain examples of almost contact submersions (which are not Riemannian submersions) with total space a PC-manifold. These examples suggest us to define the D(03C3)-conformal cosymplectic submersions. Necessary and sufficient conditions for the fibers of a such submersion to be minimal and for the horizontal distribution to be completely integrable are derived. A particular class of D(03C3)-conformal cosymplectic submersion which is in certain sense, analogous to a trivial cosymplectic submersion is studied and is obtained that this submersion is the model of D(03C3)-conformal cosymplectic submersion with totally umbilical fibers and horizontal Lee vector field. Finally, we study D(03C3)-conformal cosymplectic submersions with total space a PC-manifold. We obtain all the D(03C3)-conformal cosymplectic submersions with totally geodesic fibers and total space a particular class of PC-manifolds. of almost contact submersions (which are not Riemannian submersions) with total space a PC-manifold. These examples suggest us to define the D(03C3)-conformal cosymplectic submersions. Necessary and sufficient conditions for the fibers of a such submersion to be minimal and for the horizontal distribution to be completely integrable are derived. A particular class of D(03C3)-conformal cosymplectic submersion which is in certain sense, analogous to a trivial cosymplectic submersion is studied and is obtained that this submersion is the model of D(03C3)-conformal cosymplectic submersion with totally umbilical fibers and horizontal Lee vector field. Finally, we study D(03C3)-conformal cosymplectic submersions with total space a PC-manifold. We obtain all the D(03C3)-conformal cosymplectic submersions with totally geodesic fibers and total space a particular class of PC-manifolds.
URI: http://hdl.handle.net/10553/115020
ISSN: 0240-2963
Fuente: Annales de la Faculté des sciences de Toulouse : Mathématiques [ISSN 0240-2963], v. 4 (3), p. 473-517
Colección:Artículos
Adobe PDF (3,36 MB)
Vista completa

Visitas

63
actualizado el 25-may-2024

Descargas

32
actualizado el 25-may-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.