Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114834
Título: Modeling COVID-19 incidence by the renewal equation after removal of administrative bias and noise
Autores/as: Alvarez, Luis 
Morel, Jean David
Morel, Jean Michel
Clasificación UNESCO: 120601 Construcción de algoritmos
3202 Epidemologia
Palabras clave: Incidence curve
Pandemic
COVID-19
Reproduction kernel
Time dependent reproduction number, et al.
Fecha de publicación: 2022
Publicación seriada: Biology 
Resumen: The sanitary crisis of the past two years has focused the public’s attention on quantitative indicators of the spread of the COVID-19 pandemic. The daily reproduction number Rt, defined by the average number of new infections caused by a single infected individual at time t, is one of the best metrics for estimating the epidemic trend. In this paper, we provide a complete observation model for sampled epidemiological incidence signals obtained through periodic administrative measurements. The model is governed by the classic renewal equation using an empirical reproduction kernel, and subject to two perturbations: a time-varying gain with a weekly period and a white observation noise. We estimate this noise model and its parameters by extending a variational inversion of the model recovering its main driving variable Rt . Using Rt, a restored incidence curve, corrected of the weekly and festive day bias, can be deduced through the renewal equation. We verify experimentally on many countries that, once the weekly and festive days bias have been corrected, the difference between the incidence curve and its expected value is well approximated by an exponential distributed white noise multiplied by a power of the magnitude of the restored incidence curve.
URI: http://hdl.handle.net/10553/114834
ISSN: 2079-7737
DOI: 10.3390/biology11040540
Fuente: Biology [ISSN 2079-7737], n. 11 (4), 540
Colección:Artículos
Adobe PDF (8,84 MB)
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 17-nov-2024

Visitas

95
actualizado el 31-oct-2024

Descargas

56
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.