Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112819
Título: An empirical algorithm to forecast the evolution of the number of COVID-19 symptomatic patients after social distancing interventions
Autores/as: Álvarez León, Luis Miguel 
Clasificación UNESCO: 120317 Informática
120601 Construcción de algoritmos
3202 Epidemologia
Fecha de publicación: 2020
Publicación seriada: ArXiv.org 
Resumen: We present an empirical algorithm to forecast the evolution of the number of COVID19 symptomatic patients in the early stages of the pandemic spread and after strict social distancing interventions. The algorithm is based on a low dimensional model for the variation of the exponential growth rate that decreases after the implementation of strict social distancing measures. From the observable data given by the number of tested positive, our model estimates the number of infected hindcast introducing in the model formulation the incubation time. We also use the model to follow the number of infected patients who later die using the registered number of deaths and the distribution time from infection to death. The relationship of the proposed model with the SIR models is studied. Model parameters fitting is done by minimizing a quadratic error between the data and the model forecast. An extended model is also proposed that allows a longer term forecast. An online implementation of the model is avalaible at www.ctim.es/covid19
URI: http://hdl.handle.net/10553/112819
ISSN: 2331-8422
Fuente: ArXiv.org [ISSN 2331-8422], 2003.10017, 19 de noviembre de 2020
Colección:Artículos
Adobe PDF (714,66 kB)
Vista completa

Visitas

126
actualizado el 09-nov-2024

Descargas

27
actualizado el 09-nov-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.