Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107462
Título: A Model to Predict Users’ Intentions to Adopt Contact-Tracing Apps for Prevention from COVID-19
Autores/as: Ezzaouia, Imane 
Bulchand Gidumal, Jacques 
Clasificación UNESCO: Investigación
Palabras clave: Covid-19
Contact-tracing apps
Intentions to use
Fecha de publicación: 2021
Editor/a: Springer 
Conferencia: 28th Annual International eTourism Conference ENTER21 
Resumen: Technological advances are increasingly progressing and have brought unprecedented solutions for real-world problems for various domains, particularly, when it comes to a health-related domain. This study aims to examine the predictors of users’ intentions to adopt contact-tracing apps for prevention from COVID-19. Based on the extended unified theory of acceptance and use of technology (UTAUT2), our research model incorporates the following eight constructs: performance expectancy, effort expectancy, social influence, facilitating conditions, perceived privacy, perceived value, safety and accuracy. The empirical results were obtained from a sample of 93 questionnaires (currently still in course). We used the partial least squares approach to test our hypotheses. The results reveal that performance expectancy has the strongest impact on the intentions to use contact-tracing apps. The accuracy, effort expectancy and social influence are also important, followed by perceived value, safety and perceived privacy. Facilitating condition is listed as much less important. The theoretical and managerial implications of these results are discussed.
URI: http://hdl.handle.net/10553/107462
ISBN: 978-3-030-65784-0
DOI: 10.1007/978-3-030-65785-7_51
Fuente: Information and Communication Technologies in Tourism / Wörndl W., Koo C., Stienmetz J.L. (eds), p. 543-548
Colección:Actas de congresos
miniatura
pdf
Adobe PDF (379,63 kB)
Vista completa

Visitas

165
actualizado el 05-oct-2024

Descargas

104
actualizado el 05-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.