Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/106990
Título: | Design and independent training of composable and reusable neural modules | Autores/as: | Castillo Bolado, David Alejandro Guerra-Artal, Cayetano HernÁndez-Tejera, Mario |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Compositionality Learning by role Methodology Modular training Modularity, et al. |
Fecha de publicación: | 2021 | Publicación seriada: | Neural Networks | Resumen: | Monolithic neural networks and end-to-end training have become the dominating trend in the field of deep learning, but the steady increase in complexity and training costs has raised concerns about the effectiveness and efficiency of this approach. We propose modular training as an alternative strategy for building modular neural networks by composing neural modules that can be trained independently and then kept for future use. We analyse the requirements and challenges regarding modularity and compositionality and, with that information in hand, we provide a detailed design and implementation guideline. We show experimental results of applying this modular approach to a Visual Question Answering (VQA) task parting from a previously published modular network and we evaluate its impact on the final performance, with respect to a baseline trained end-to-end. We also perform compositionality tests on CLEVR. | URI: | http://hdl.handle.net/10553/106990 | ISSN: | 0893-6080 | DOI: | 10.1016/j.neunet.2021.03.034 | Fuente: | Neural Networks [ISSN 0893-6080], v. 139, p. 294-304, (Julio 2021) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.