
Neural Networks 139 (2021) 294–304

S
d

m
p
t
c
t
a
c

t
g
t
e
p
o
p
b
r
o

d
m

c
(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Design and independent training of composable and reusable neural
modules
David Castillo-Bolado ∗, Cayetano Guerra-Artal, Mario Hernández-Tejera
IANI Institute and Department of Computer Science, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas
e Gran Canaria, Spain

a r t i c l e i n f o

Article history:
Received 14 June 2020
Received in revised form 17 March 2021
Accepted 22 March 2021
Available online 1 April 2021

Keywords:
Modular training
Modularity
Compositionality
Methodology
Learning by role
Visual Question Answering

a b s t r a c t

Monolithic neural networks and end-to-end training have become the dominating trend in the field of
deep learning, but the steady increase in complexity and training costs has raised concerns about the
effectiveness and efficiency of this approach. We propose modular training as an alternative strategy
for building modular neural networks by composing neural modules that can be trained independently
and then kept for future use. We analyse the requirements and challenges regarding modularity and
compositionality and, with that information in hand, we provide a detailed design and implementation
guideline. We show experimental results of applying this modular approach to a Visual Question
Answering (VQA) task parting from a previously published modular network and we evaluate its
impact on the final performance, with respect to a baseline trained end-to-end. We also perform
compositionality tests on CLEVR.

© 2021 Elsevier Ltd. All rights reserved.
c
A
A
t

m
d
m
a
a

1. Introduction

Deep learning has been demonstrated to be a powerful part of
achine learning, enabling the automatic discovery of complex
atterns in data and as a result finding solution to problems
hat had previously been considered very difficult to solve or
omputationally unfeasible. As the research community teases
he limits of this approach, the predominant trend is to design
nd train new monolithic neural networks for each new task,
onducting the training in an end-to-end fashion.
The steady increase in complexity of these tasks has made

he amount of resources invested in training neural networks a
rowing concern. A recent work of Strubell et al. (2019) analyses
he training cost of state-of-the-art NLP models and reports CO2
missions equivalent to those of a trans-American flight. It also
oints out that the training cost represents only a little fraction
f the total development cost, as the greater part falls into hyper-
arameter optimization. This not only damages the environment,
ut also imposes access and creativity barriers to underfunded
esearchers. Therefore, prioritizing the computational efficiency
ver brute performance has often been recommended.
Guidelines of software engineering encourage the design and

evelopment of modular systems, which favour understanding,
aintainability and reusability: this seems to be the key towards

∗ Corresponding author.
E-mail addresses: david.castillo103@alu.ulpgc.es (D. Castillo-Bolado),

ayetano.guerra@ulpgc.es (C. Guerra-Artal), mario.hernandez@ulpgc.es
M. Hernández-Tejera).
ttps://doi.org/10.1016/j.neunet.2021.03.034
893-6080/© 2021 Elsevier Ltd. All rights reserved.
generalization in neural networks as well (see Bahdanau et al.,
2019; Cai et al., 2017). In this paper, we elaborate on the meaning
of modularity and compositionality within neural networks and
how they can be leveraged to build neural modules that can be
trained independently and assembled, while showing a highly
compositional behaviour. Our main contributions are as follows:

• Taxonomy of compositional dependencies in the context
of independent modular training and their corresponding
solutions.

• Methodology for the implementation of modular interfaces
with neural data types.

• Definition of Learning by Role as an essential mechanism for
injecting behaviour into modules.

• Introduction of surrogate gradient modules for training neu-
ral modules under indirect supervision.

• Methodological recipes for making a modular neural net-
work meet compositionality requirements.

We exemplify and validate all points mentioned above on a
ase study focused in the Visual Question Answering task (VQA,
ntol et al., 2015), based on Neural Module Networks (NMN,
ndreas et al., 2016). We also perform further compositionality
ests on the synthetic CLEVR data set (Johnson et al., 2017).

The paper is organized as follows. In Section 2 we introduce
odularity and compositionality for neural networks. Section 3
escribes the modular training approach. In Section 4 we com-
ent on previous work related to our own. Experimental results
re presented in Section 5. In Section 6 we show our conclusions
nd we discuss implications and future work.

https://doi.org/10.1016/j.neunet.2021.03.034
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.03.034&domain=pdf
mailto:david.castillo103@alu.ulpgc.es
mailto:cayetano.guerra@ulpgc.es
mailto:mario.hernandez@ulpgc.es
https://doi.org/10.1016/j.neunet.2021.03.034

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

2

c
c
l
g
m
e
s

c
w
t
d
t
o

m
t
w
2
m
b
g
f

c
t
c
k
h
w
s
b
b
r
c
o
t
t
t

p
t
c
s
w
l
n
c
n
n

h
i
o

3

t
i
i
t
I

f
a
h
a
b
r
a
c
d
f

. Modularity and compositionality

Modularity and compositionality are two different concepts,
losely related, but whose implications depend heavily on the
ontext in which they appear. As a result, in the field of deep
earning, there has been certain amount of confusion in this re-
ard and there has also been an important debate about the actual
eaning of compositionality within neural networks (Hupkes
t al., 2020). We provide a definition of modularity and compo-
itionality as they should be understood within this article.

Modularity is a structural property that states that a system is
omposed of several parts, each one with its own functionality,
ith the purpose of easing implementation and maintenance. On
he other hand, compositionality is a functional property that
escribes how well these parts can be rearranged while main-
aining their original purpose to produce regular and predictable
utcomes.
Artificial neural networks are modular in their structure and

odern implementation of common neural layers and archi-
ectures benefit from that aspect in order to provide frame-
orks that are both easy to use and maintain (Abadi et al.,
015; Jia et al., 2014; Paszke et al., 2019). However, this kind of
odularity does not transfer by any means into compositional
ehaviour. Montague (1970) defines compositionality as the al-
ebraic capacity to understand and produce novel combinations
rom known components.

Good software design rules of high cohesion and low coupling
an therefore be extended to differentiable programming, being
he design and optimization the main sources of cohesion and
oupling, respectively. Modules trained jointly might overfit to all
inds of interrelations and give raise to undesired emergent be-
aviours (Jacobs, 1990), preventing the compositional behaviour
hen assembled in layouts not seen during training. In this
ense, there exists a family of neural architectures that, being
uilt with functional modularity in mind, seek compositionality
y design (see Socher et al., 2013): NMN define a set of neu-
al modules, with possibly different module architectures and
apacities, which are assembled in different layouts depending
n the instance. Modules are then trained using backpropagation
hrough structure (Goller & Kuchler, 1996). It is within this con-
ext and for this family of neural architectures that we propose
his methodology.

In addition, modularity paves the way for a systematic ex-
loitation of the divide and conquer strategy, solving complex
asks gradually and focusing efforts and resources in a more effi-
ient way. The practice of reusing components, very common in
oftware engineering, but still poorly exploited within neural net-
orks, would extend further than the mere application of transfer

earning to embedding layers. Modular and composable neural
etworks enable a new fully modular paradigm, where modules
an be reused in all sorts of tasks, stimulating the creation of
eural module libraries and even allowing to build new neural
etworks without the need for conducting end-to-end training.
How to train such modules is still an important challenge,

owever. At first glance, it is not easy task to find a general train-
ng recipe, therefore it is highly relevant to establish a methodol-
gy that facilitates the spread and adoption of the practice.

. Modular training

In contrast to the well-known joint training process, modular
raining aims to independently train neural modules 1. The goal
s to be able to train any module in the network, regardless of
ts role or interactions with other modules, in a way that all
he advantages of the compositional modularity can be exploited.
deally, there would be a data set for each module, where inputs
 f

295
Fig. 1. Generic depiction of a neural module, with an input, output and a
learning signal in the form of gradient.

are paired with their corresponding expected outputs, but this
is rarely the case and keeping to the fully supervised training
involves the end-to-end training of multi-module assemblies.
Although this latter option is a valid strategy for avoiding mono-
lithic end-to-end training, there are further factors to take into
account.

It is well known that neural networks can overfit to spurious
patterns in data and even interactions between different parts
of the network (Novak et al., 2018). We aim to prevent such
undesired emergent behaviour – or coupling – by identifying
input dependencies and availability of supervision signal.

3.1. Compositional dependencies

We have identified five main types of cases regarding depen-
dencies that may appear during modular training. Two of them
are related to the availability of input data, two others have to do
with the quality of the gradient reaching the module and the fifth
case is a dependency that arises from the interaction between
different outputs.

• Decoupled input. The module’s input does not depend on
other modules, nor can it be obtained independently. This
is often the case of input modules, which receive raw data
directly from the data set and are the first operation in the
pipeline.

• Dependent input. The module’s input comes from other
modules and cannot be obtained by other means. This cre-
ates a sequential dependency, in a way that the correspond-
ing input modules must be trained beforehand.

• Direct supervision. There is a loss function that can be
computed directly over the module’s output in order to
guide the training, either because the module gives the final
output, there are traces available or there is an ad-hoc or
heuristic training loss.

• Indirect supervision. There is insufficient learning signal or
no direct connection between the module’s output and a
loss function. In a joint training scenario, this would typ-
ically be the case of non-final modules, which commonly
receive gradient through the output modules.

• Codependent gradient. The module’s output interacts with
other output values in a way that cannot be characterized
as ensemble averaging. This means that a non-trivial inter-
action arises, which affects the values returned by the loss
function and therefore, the function learned by each module
taking part in the interaction.

Fig. 2 shows an example of a modular neural network –
ormed by an assembly of four distinct neural modules – in which
ll five mentioned scenarios occur. In this example, we suppose
aving a data set for the task that is carried out by the entire
ssembly, mapping inputs to expected outputs or labels. That
eing the case, modules with decoupled input (A and C) do not
equire any special treatment in this regard and can use the input
s is from the dataset. Modules that provide the final output or
ontribute to it in an ensemble-like fashion (D) are said to have
irect supervision and can receive a good learning signal in the
orm of gradient, which may just be computed as any kind of loss

unction over the output and its corresponding label.

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

r
o

d
u
t
s
p
r
a
b

s
a
a
s
p
a
m
n
b

t
D
o
i
b
B
m

3

t
a
t
i
e

w
o
i
c
2

p
t
i
t
n
t
t
m
t
m

g
t
c

i
s
2
g
a
t
a
t
i

a

Fig. 2. Example arrangement of four distinct neural modules, where A and C
eceive decoupled input and only D has direct supervision. Module B has neither
ne nor the other. Outputs of B and C may interact before going into D.

However, cases of dependent input and indirect supervision
o require special consideration. Modules that take other mod-
les’ output as input introduce sequential dependencies during
raining and cannot be learned until those dependencies are
olved (B depends on A, and D on B and C). For such cases, we
ropose the creation of intermediate data sets that represent the
elation between those intermediate outputs and the labels, thus
voiding the need for executing input modules after they have
een trained.
In contrast, modules A, B and C may present cases of indirect

upervision, and these are not straightforward to solve. In the
bsence of any kind of loss function for the module being trained,
n alternative loss or task must be provided in order to generate
ome kind of gradient that is capable of guiding the module’s
arameters to a valid configuration (weak or self supervision is
n option). In Section 3.3 we propose the leverage of an auxiliary
odule to enable modular training in an indirect supervision sce-
ario whilst keeping the compositional properties of the module
eing trained.
Cases of output interdependence may arise anywhere where

wo or more outputs are put together (before input of module
). In a best case scenario, outputs of B and C are concatenated
r expected to be parts of a redundant ensemble, thus enabling
ndependent training. In a worst case scenario, outputs would
e so entangled that both modules should be trained jointly.
etween these two extremes, sequential training can be one of
any tools to be leveraged (see case study in Section 5.5).

.2. Modular interfaces and neural data types

Well-defined interfaces ease scaling and addition of func-
ionality without interfering with existing functions or forcing
redesign of the system. In this section we will comment on

he desired qualities of a neural data type in order to avoid
nter-modular dependence and favour compositionality and gen-
ralization.
Although modular training prevents inter-modular coupling,

hich is expected to appear in an end-to-end training, the choice
f data representation can still give raise to input dependencies
f modules are trained sequentially. Modules may overfit to input
entring, scale or other manifold-related aspects (Novak et al.,
018).
Differently from the ordinary practice, we aim to achieve com-

ositionality when transferring the modules to new architectures
oo. In order to provide guarantees of compositionality, module
nputs and outputs cannot depend on the module implementa-
ion, but on a shared specification. Unlike previously published
eural modules, which produce non-typed representation vec-
ors, a compositional neural module must output meaningful data
hat is consistent with the module’s task and the use that will be
ade of it. In this regard, the neural data type must specify – to

he fullest extent possible – the output domain and its expected
anifold or distribution.
296
Finally, the universal approximation theorem (Hanin & Sellke,
2017; Lu et al., 2017) states that neural networks work arbitrarily
well at interpolating, but provide no guarantees in the extrapo-
lation regime. Bounded input values help keeping the network in
the interpolation regime and avoid off-distribution issues (Gleave
et al., 2020). One of the best examples of this quality is presented
by Cai et al. (2017), where they give generalization guarantees for
the first time in the field of neural networks. This motivates us to
propose additional constraints related to boundedness.

Approximations to neural data types have been leveraged in
the past without explicit consideration; for example in the gating
units of Long Short-Term Memory networks (LSTM, Hochreiter
& Schmidhuber, 1997) or flags in general (Reed & De Freitas,
2015), softmax outputs interpreted as probability mass functions
or attention mechanisms and latent variables in generative ad-
versarial networks (Brock et al., 2019, Appendix E). Among these
cases we find output values confined to a bounded space, with a
well-defined meaning (gate or probability mass distribution) and
sometimes further manifold related restrictions (values adding up
to 1 or coming from a Bernoulli distribution).

Implementation of neural data types therefore is to be done
at every module’s output and it can be achieved via two different
types of constraints:

• Domain related or hard constraints: they set the range of the
output values via clipping or activation functions. All output
values will therefore remain in the domain by definition.

• Semantic or soft constraints: they determine the expected
manifold for the output tensor. Some semantic constraints
may be implemented as activation layers like softmax or
normalization layers, but usually no guarantee can be given
that output data will lie in the expected manifold. In such
cases, the module is encouraged to comply with the seman-
tic constraints through a training loss, either from labelled
data, a heuristic loss, a discriminator or any other kind of
auxiliary training module (see Section 3.3).

Differentiability is an additional requirement, given that we
aim to train the module with gradient descent. However, this
aspect of the data type is temporal and mainly useful during
training, as there is a priori no need to propagate gradients
through modules afterwards. For later modular use, generaliza-
tion might be favoured by exploiting discrete or quantized output
values.

3.3. The surrogate gradient module

In a scenario of indirect supervision, where insufficient or no
direct supervision is available, we hypothesize that an effective
training gradient can be obtained by letting an auxiliary module
bridge the gap between the module’s output and the nearest loss
function (see Fig. 3). We call it the surrogate gradient module, as its
oal is to help train the module independently by approximating
he gradient needed for that matter, using the least amount of
omputational resources possible.
Surrogate models are commonly used in science and engineer-

ng for approximating the input–output behaviour of an expen-
ive simulation or a system that cannot be easily measured (Jin,
011; Queipo et al., 2005). For our part, we think of the surrogate
radient module as a way of approximating the gradient that
module would receive during an end-to-end training. From

his premise, in our case, the incentive is not to model the
ctual input–output behaviour of the neural network between
he module and the supervised point, but rather to model its
nput-gradient behaviour.

This goal is supported by the following desiderata: (i) avail-
bility of gradient at the module’s output; (ii) compliance of the

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

t
1
a

t
i
n
i
e
c
t
a
r
a
f
t
c
o
i
t
b
l
e

3

a

Fig. 3. Example application of the surrogate gradient module, placed to bridge
the gap left by modules B and D. The output given by the surrogate gradient
module matches the original output data type.

trained module’s output with the module’s target data type, lying
in the desired domain and manifold; (iii) final behaviour is as
expected, as if the module had learned in an end-to-end fashion.
Note that if we were only interested in independent training, the
point (ii) would be useless, but it is of high relevance for obtaining
a generalizing compositional behaviour (Cai et al., 2017; Lu et al.,
2017).

We envision the surrogate gradient module as a minimalist
surrogate architecture that processes the trained module’s output
and connects it with the next supervised point available in a
meaningful way. Its purpose is not to achieve the best perfor-
mance in the final end-to-end task, but rather to be the least
complex pipeline representing the output data type’s restrictions
and relation to the supervised value. From this premise, we ex-
pect that such an auxiliary module may make the trained module
converge to a point close to its optimal configuration. We base
this vision on the ability of learning by role.

3.3.1. Learning by role
Learning by role is an emergent learning phenomenon that has

frequently, yet quietly been showcased in the literature. Andreas
et al. (2016) described it as when a part of the neural network
acquires its behaviour as a byproduct of the end-to-end training pro-
cedure. We therefore have named it after Role Play, the equivalent
echnique from the field of language learning (Ladousse & Maley,
987), where students are given a simulated scenario to develop
set of skills within a safe environment.
According to learning by role, each part of the network learns

o do its best within the realm of scenarios it is allowed to express
tself in. Early examples could be seen in convolutional neural
etworks, where the detection tasks that each unit can learn
s determined by the features available at each layer (Yosinski
t al., 2015). This purely functional role contrasts with other early
ases, like forget gates in LSTM, where the interaction between
hese units and the memory is carefully designed and acts as
hard constraint, limiting the function domain to forgetting-

elated tasks (Hochreiter & Schmidhuber, 1997). Later on, gener-
tive adversarial networks showed that learning by role could go
urther by combining both domain and semantic role constraints,
his time in the form of the generator’s architecture and a dis-
riminator, respectively (Goodfellow et al., 2014). However, one
f the latest examples of learning by role in modular networks
s presented in NMN, in which modules are not only designed
o perform well in certain tasks, but also converge to the target
ehaviour as a consequence of the place they take in the network
ayout and the samples they are used for (Andreas et al., 2016; Hu
t al., 2017).

.3.2. Design considerations
Although the surrogate gradient module is not conceived to

chieve any useful degree of task performance, we hypothesize
297
that we may interpret its loss or accuracy as a relative improve-
ment indicator. We provide an empirical proof of this hypothesis
in Section 5.3. Nonetheless, it is also important to determine if
the value given by the surrogate gradient module can be trusted.
This is mainly an issue in the early stages of training or in the
case of poorly configured hyperparameters, when the surrogate
gradient module might be brittle, or not trained well enough.
That is why we recommend computing its predictive uncertainty
during validation, as done by Gal and Ghahramani (2016).

The design of a surrogate gradient module is an engineering
task that has to be done ad-hoc for each case. Luckily, domain
constraints and maybe some semantic constraints are already
implemented as part of the output data type, but even so, the
designer must consider the targeted role of the neural module,
as well as its output specification and how the neural mod-
ule’s output relates to the supervised point. However, due to the
uniqueness of this task, we can only provide general indications
for its design:

• The architecture has to transform the neural module’s out-
put into the supervised data.

• It must not do it in a random way, as doing so would miss
the point and would probably drive it to overfitting the
surrogate task.

• The transformation has to make sense and be consistent
with both output and supervised data types. Supervised data
type must be built following the rules in Section 3.2.

• All qualities of the module’s output data type should take
part in the transformation in order to make all of them par-
ticipate into the learning by role and contribute to shaping
the data type.

• The surrogate gradient module will be discarded after train-
ing, therefore it is recommended to make it lightweight in
order to spare resources.

4. Related work

Traditional understanding of modularity in neural networks
has been centred on ensembling methods, considering several
ways to partition the input space for the sake of redundancy,
or delegating partitions among modules (Chen, 2015). Moreover,
this notion of modularity does not consider functional composi-
tionality.

Modern approaches extend the application of modularity to
the functional level, building in this way a modular architecture
or pipeline where compositional behaviour naturally emerges.
A common scheme is to divide the architecture into several
functional modules and a controller. Most memory networks rely
on this scheme, having a controller making use of handcrafted
memory modules like a stack (Grefenstette et al., 2015; Joulin
& Mikolov, 2015), a tape (Kurach et al., 2015) or an associative
memory (Danihelka et al., 2016; Graves et al., 2014, 2016). Aside
from this, Véniat et al. (2019) uses a controller for dynamically
adjusting the network complexity and Kirsch et al. (2018) lever-
ages it for reusing modules across layers, thus working like a
mixture of experts (Jacobs et al., 1991) in which input and output
spaces are equally sized. However, all these networks conceive
modules with a very low cohesion and high coupling. More com-
plex and heterogeneous layouts can be found in Andreas et al.
(2016). There are also domains in which the layout is basically
given by the problem instance, often in tree shape and with a
single module instance (Silver et al., 2016; Socher et al., 2013).
These examples set a strong foundation and serve as inspiration
to our research, although they all train the modules jointly in an
end-to-end fashion.

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

i
m
i
F
o
t

b
s

Modular training has been previously performed by Cai et al.
(2017), providing guarantees of perfect generalization for a Neu-
ral Programmer Interpreter (NPI, Reed & De Freitas, 2015) by
means of a recursive approach and a fully supervised modular
training. A later study by Castillo-Bolado et al. (2019) analy-
ses training statistics and generalization capabilities of a mod-
ularly trained neural network, it also gives hints for design-
ing modular neural networks. Both rely on the availability of
traces for conducting a fully supervised training and have been
tested on synthetic tasks. Synthetic gradients (Jaderberg et al.,
2017) enable asynchronous training of blocks in a neural net-
work, thus achieving a certain degree of decoupling, but they
are not intended to work as a completely decoupled training
method. Gupta et al. (2020) highlight the difficulties of jointly
training a highly nonlinear modular network, they leverage auxil-
iary losses and heuristics and suggest the pretraining and reusing
of modules.

Models intended to solve VQA tasks usually rely on architec-
tures with a high degree of modularity, in which composition is
favoured and often pre-trained modules come into play (see Hu
et al., 2017; Yu et al., 2019). In fact, Yu et al. (2019) won the
first place in the VQA Challenge 2019 with a modular architecture
and both two first models use a pre-trained BERT model (Devlin
et al., 2018) as a text feature extractor. Nevertheless, the ma-
jority of the modular architecture is still trained end-to-end and
the role of the pretrained modules is merely to generate a rich
representation of the data. Modules are also designed with very
low cohesion and high coupling, as so is more suitable to train
end-to-end. Singh et al. (2018) provide a modular framework for
vision and language multimodal research, but it is intended for
bootstrapping design and it relies on joint end-to-end training
and posterior ensembling.

5. Experiments

Our experiments are focused in testing the feasibility of the
modular training approach on an existing modular neural net-
work and measuring the impact it has on several training and
performance statistics. We base our case study in the first imple-
mentation of NMNs, which was designed for solving the VQA v1
task.

We compare the network trained end-to-end to two different
approaches to modular training: with and without adjusting the
original design. We run a random hyperparameter search for the
end-to-end network, as well as for every neural module, consist-
ing of 50 evaluations each. Moreover, we analyse these results to
assess the performance of distinct modules of the network and
discuss its relevance towards the final accuracy.

Finally, we adapt the VQA v1 implementation to the CLEVR
data set in order to conduct compositionality tests. The code for
replicating the experiments can be found at https://github.com/
dcasbol/dnmn.

5.1. Case study: Neural module networks and VQA

Neural Module Networks (NMN) is a class of neural architec-
tures introduced by Andreas et al. (2016) in which the neural
network is formed by a set of composable neural modules that
are assembled specifically for each input sample. These mod-
ules are designed with different architectures depending on their
expected functionality, but they also learn different functions by-
role as a consequence of the end-to-end training (example layout
in Fig. 4).

For this paper, we wrote a PyTorch (Paszke et al., 2019) imple-
mentation based on that original version and we took it as a start-

ing point for implementing and testing our modular approach.

298
Fig. 4. Original NMN architecture. The sentence goes through a parser, which
determines the module layout to use and their instances. An LSTM processes the
sentence separately and both answers are combined via geometric averaging.

Fig. 5. Schematic depiction of NMN’s composable modules. The module’s
weights are distinct for each instance and the attention mechanism is based
on multiplication and weighted average.

The input question goes through the Stanford Parser (Klein &
Manning, 2003) and the representation obtained is used to de-
termine the network layout. Image features are extracted from
a VGG16 (Simonyan & Zisserman, 2014) network pre-trained
on ImageNet (Deng et al., 2009) and the QuestionEncoder is
mplemented by an LSTM (Hochreiter & Schmidhuber, 1997) that
aps the question to a distribution over possible answers. A basic

llustration of the other module’s implementation can be seen in
ig. 5. In order to gain flexibility we do all tests locally, taking part
f the official validation set as test set. We also provide official
est results for the final models.

We take the NMN trained in an end-to-end fashion as our
aseline, registering an accuracy of 51.49% on the official test
erver.

https://github.com/dcasbol/dnmn
https://github.com/dcasbol/dnmn
https://github.com/dcasbol/dnmn

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

c
l

5

w
p
c

i
p
l
p
W
f

Fig. 6. Surrogate gradient module used to train the Find module. Input is pro-
essed in an equivalent way as in the full NMN, although with a single factorized
inear matrix. Dropout is leveraged for computing predictive uncertainty.

.2. Implementing a surrogate gradient module

The case study presents a typical case of indirect supervision
hen training the Findmodule. Its input comes directly from the
re-trained VGG16 network, but there is no loss function that we
an directly apply over the module’s output.
Instead of generating training labels or leveraging other train-

ng techniques with low supervision requirements, we can im-
lement here a surrogate gradient module. We also impose a
ow-complexity constraint for proving that no high end-to-end
erformance is required to approximate the gradient (see Fig. 6).
e accomplished this by factorizing the weight matrix of the

ully connected layer into two smaller matrices. BeingW ∈ RN×M ,
we let it be built as a multiplication of two matrices WA ∈ RN×L

and WB ∈ RL×M , where L ≪ min (N,M).
The surrogate gradient module helps training the neural mod-

ule by imposing restrictions over the neural module’s output
that are equivalent to those encountered during the end-to-end
training. In other words, the surrogate gradient module must
consider data types to make a meaningful use of the module’s
output.

In the particular case of the module Find, the original output
data type is a heatmap of unnormalized attention. That is, a 2D map
of positive unnormalized values that are intended to function as
an attention map. In the original implementation, this output may
be used directly to answer yes/no questions or as an input for
an attention mechanism over the VGG16 features. The surrogate
gradient module has to mimic this behaviour if we expect the
neural module to work well when fitted into the full architecture.

5.3. Validation of the surrogate gradient module

In Section 3.3 we propose the use of a surrogate gradient
module to train a neural module in a scenario of indirect super-
vision and we hypothesize that the loss value obtained from the
surrogate gradient module is an indicator of the actual module’s
performance. In order to validate this hypothesis, we have mea-
sured the correlation between the mean validation losses of the
surrogate gradient module and the complete network.

We designed this experiment in three parts. First, we used
the surrogate gradient method to train N = 100 Find modules
with randomly chosen hyperparameters and for a randomly set
number of epochs. We thus generated N neural modules with
different degrees of performance and recorded their surrogate
loss and the predictive variance during validation.

Secondly, from this set of trained modules, we discarded all
modules that resulted in a predictive variance over 0.0025 on
the output softmax domain (2σ = 0.1), which denotes that their
behaviour is not very trustworthy, and from the remaining subset,
we selected the modules exhibiting the lowest variance, trying to
uniformly cover the range of validation losses (blue dots in Fig. 7).

Finally, and for each Find module in the selected subset,

we transferred the weights to the end-to-end model and we

299
Fig. 7. Representation of all the randomly trained Find modules. For each one
we show the mean loss of the surrogate gradient module over the validation
set and its prediction variance. Modules in red were a priori discarded due to
high uncertainty. Modules selected for the experiment are shown in blue. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Correlation plot between surrogate module and final assembly loss.
The line shows the correlation found and shadowed area represents the 95%
confidence interval for the regression line.

trained it jointly while keeping the pre-trained weights frozen.
This allowed forming a plot where surrogate loss and final loss are
put together (Fig. 8). Apart from some degree of noise, naturally
expected from random batching and gradient descent, the plot
shows a correlation between both measures, which supports our
hypothesis and opens the door to using the surrogate gradient
module not only for conducting module training, but also for
module selection. The correlation found has a Pearson correlation
coefficient of 0.9 with a p-value of 10−14.

5.4. Direct modular training

A modular training of the NMN can be done just by paying
attention to the compositional dependencies (Section 3.1) and
solving them as indicated by the guidelines provided. In this
particular case, we find a variety of input and supervision depen-
dencies, the QuestionEncoder being the easiest module to train
and needing a surrogate gradient module for training the Find
module. All dependencies found are described in Table 1.

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

T
C

o
f
H
e
n

c
v
t
m

a
b
a
b

r
m
I
e
N
i
t
n
u

3
T
e
i
r
p

t

f
1
s
t

m
a
h
i
a
c
i
s

5

c
d
s
t
m
h

u
f
a
t
H
c
i
g
b
d

able 1
ompositional dependencies found in each module of NMN.

Input Supervision

Module Decoupled Dependent Direct Indirect

Encoder ✓ ✓
Find ✓ ✓
Describe ✓ ✓
Measure ✓ ✓

Fig. 9. Accuracy obtained for every modular and end-to-end evaluation during
hyperparameter optimization.

Moreover, as we will train the network from scratch, Find
must be trained before Describe and Measure. Note that this
nly occurs because there is no pretrained Find module be-
orehand and root modules have an input dependency on Find.
aving to train all modules in a modular network is actually an
xtreme case, as it only serves as a bootstrapping step if there is
o module library or a previous version of the network.
This sequential dependency is mitigated by the creation of a

ached virtual dataset, storing resulting heat maps and attended
ectors for each sample in the original VQA dataset, thus avoiding
he execution of the Find module during the training of the
odules Describe and Measure.
We have optimized batch size, learning rate, weight decay

nd dropout rate independently for each module and taken the
est performing configuration in each case. The final assembly
chieves a test accuracy of 54.49%, getting very close to the
aseline (see Table 2).
As an additional benefit of modularity, we can inspect this

esult in detail, obtaining insight about each module’s perfor-
ance and its susceptibility to hyperparameter configurations.

n Fig. 9 we show the accuracy obtained at each evaluation for
ach module and also for the end-to-end version of the NMN.
ote that the results for the Find module are those given by
ts surrogate gradient module and we can even see some of
hem at 0% accuracy, which correspond to configurations that did
ot surpass the minimum threshold we had set for predictive
ncertainty.
Yes/no questions are assigned to Measure, which make a

5.81% of the data set, and the remaining 64.19% to Describe.
his kind of information is very useful towards increasing the
fficiency of the hyperparameter search – focusing the resources
n more sensible modules – or for conducting an informative
edesign of the network’s architecture. In this case, results would
oint to considering changes to the Describe module.
In Fig. 10 we show the total time invested for both modular

raining and the end-to-end baseline. We exclude the time for
 t

300
Fig. 10. Total training times during hyperparameter optimization. End-to-end
training has a constant cost, while the cost for the modular approach is
commonly a fraction of the aggregated costs, depending on the availability of
pre-trained modules and what modules have been added or redesigned.

generating the virtual dataset because it is negligible — less than
5 min, once after module Find is ready. The extra time required
or the worst scenario in modular training represents roughly a
0% of the time needed for the end-to-end baseline. It is therefore
afe to say that modular training will almost always require less
ime than training end-to-end.

In this very particular case, where the entire model fits in
emory and there is no pre-trained module at hand, it is prob-
bly better to go for an end-to-end training. On the other hand,
aving to fit only one module in GPU means two things: (1) it
s possible to train the module with less expensive equipment
nd (2) the remaining memory can be used to increase module
apacity or batch size. This factor has been left out in this section
n order to keep it simple, but it will be exploited in the next
ection.

.5. Adjusted modular training

While conducting modular training without making any
hanges to the network is possible, in order to obtain higher
egrees of compositionality and reusability, we recommend de-
igning proper modular interfaces and implementing neural data
ypes (see Section 3.2). This procedure includes redesigning some
odules in order to make them better reflect their desired be-
aviour and increase their utility.
Regarding this latter aspect, Andreas et al. (2016) justify the

se of the QuestionEncoder pointing to the aggressive simpli-
ications made by the parser and the intention to model syntactic
nd semantic regularities in the data. This implies that the Ques-
ionEncoder is intended to learn some sort of common sense.
owever, they implement it as a mask over answers, while it
ould be implemented as a prior that is overruled by new ev-
dence provided by other modules. Merging answers through
eometric average may actually hurt generalization as it will
lock out any evidence that contradicts training data and intro-
uces a strong gradient codependency. We thus have substituted

he geometric average by the most common implementation of

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

p
t

a
p
n
e
t
p

F

F
a
w
t
b
m
o
m
p
i

m
t
o
m
t
o
u
t
u

e
T
a
5
i
5
t

Fig. 11. Modified NMN architecture for improved compositionality. LSTM now
rovides a prior to the other branch and Find generates bounded soft masks,
hus enabling the use of the minimum as the AND operator.

prior in neural networks: an additive bias. QuestionEncoder
rovides this way an actual prior for the other branch of the
etwork to work on, delegating to other modules the gathering of
vidence from visual data (see Fig. 11). This new way of merging
he outputs reduces the gradient codependency, but still the
rior given by the QuestionEncoder alters the target function

of the other branch, so it must be trained foremost. We have
also created an additional virtual dataset for caching these prior
logits and using them as a bias term for Measure, Describe and
ind’s surrogate gradient module.
Moving on to data types, the original implementation of the

ind module relies on heatmaps or unnormalized attention, which
re good enough for an end-to-end training but enter in conflict
ith the boundedness criteria introduced in Section 3.2. We have
herefore substituted the ReLU activation function for a sigmoid,
ounding so the value per pixel to the range (0, 1) and giving soft
asks as output instead of heat maps. This also enables the use
f the minimum and maximum operations as alternative imple-
entations of the AND and OR operators. These implementations
reserve the data type of the input, thus avoiding extrapolation
ssues and favouring generalization.

Additionally, in Section 5.4 we comment that modular opti-
ization enables making use of the extra GPU memory in more

rainable parameters or greater batch sizes. We have taken this
pportunity to benefit from the combinatorial advantages of
odular hyperparameter exploration. We explored batch sizes up

o 4 times greater than in the end-to-end approach and also some
ther hyperparameters specific to certain modules: whether to
se a bias in Find or not, softmax or weighted average as at-
ention mechanism, different embedding sizes, number of hidden
nits and dropout rates for QuestionEncoder and Measure.
In Fig. 12 we show the accuracies on the validation set for ev-

ry modular evaluation done during the hyperparameter search.
he effect of using QuestionEncoder as a prior is clear, setting
floor for the surrogate gradient module’s accuracy, which adds
.5% on top of it. Accuracies for Measure and Describe have also
ncreased with respect to values in Fig. 9. This model achieves a
6.66% accuracy on the test set, which is 1.79 points higher than

he end-to-end baseline (see Table 2).

301
Fig. 12. Representation of the modular hyperparameter search after changes for
improved compositionality.

Table 2
Comparison of accuracies achieved by different versions of the same NMN
architecture.
Model version Accuracy

end-to-end baseline 54.87%
modular 54.49%
modular + data types 56.66%

Table 3
Gradient-oriented implementation of several interface-related elements and
their corresponding proposed neural data type for the experiment.
Element Gradient-oriented implementation Neural data type

Attention map heat map (ReLU) mask (sigmoid)
Answer logits softmax values
AND multiplication minimum
OR addition maximum

5.6. Compositionality

With the aim of evaluating how neural data types help neu-
ral modules generalize and exhibit compositional behaviour, we
conducted a series of experiments on the CLEVR data set, in
which we trained the neural modules on functional programs
with a maximum of five consecutive operations, in an end-to-
end fashion, and then tested them on deeper programs. Being
CLEVR a synthetic data set, it provides functional programs up
to 22 operations in depth.

For conducting these experiments, we translated CLEVR func-
tional programs to network layouts. We then let one implemen-
tation have interfaces with neural data types, while we leave
the other use interfaces optimized for gradient flow and end-to-
end training. Thus, both implementations share architecture and
differ solely on the interfaces, as described in Table 3.

The first experiment focuses on layouts from the training set
with depths greater than those seen during training (Fig. 13 left).
As these layouts are part of the same set, input images and
features are from the same distribution, thus isolating the effect
of the composition. We can see how the implementation with
neural data types systematically beats the one without them. The
error increases drastically from depth 6 to depth 7 and there is a
tendency to increase the error for deeper layouts, which is almost
negligible if neural data types are implemented. As a reference,
the dotted lines show the model’s error after having been trained
on all program depths, which further evidences the benefit of
neural data types.

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

o
p

b
a
b

r
s
d
t
f
p
o

s
a
s
F
g
d
m
l
w

6

l
t

Fig. 13. Compositionality experiments on train (left) and validation data (right). We only show layout depths unseen during training, for which a significant number
f samples was available. In validation, a dashed line separates depths seen and not seen during training. For reference, we also show the error after training on all
rogram depths.
Fig. 14. Comparison of the generalization error at different program depths
etween a modular neural network with neural data types and a state-of-the-
rt monolithic neural network. Program depths seen during training are shown
efore the dashed line.

The second experiment is run on validation data (Fig. 13
ight), including also depths seen during training. Here we also
ee the systemic prevalence of the implementation with neural
ata types, even on layout depths seen during training. However,
he error raises quicker than on training data. This leaves image
eatures as the main source of generalization error. We must
oint out that VGG-16 features do not comply with our definition
f neural data types.
One final experiment focuses on giving context to these re-

ults, comparing the previously shown modular network against
monolithic architecture that has achieved state-of-the-art re-

ults in the CLEVR task (FiLM, Perez et al., 2018). We train the
iLM network on instances corresponding to program depths not
reater than five, and test it afterwards on different program
epths from the validation set (see Fig. 14). Despite exhibiting
uch better performance on trained depths than the otherwise

ow-capacity modular network, FiLM suffers a performance drop
hich is significantly worse.

. Discussion and future work

In this work we have proposed a series of principles and guide-
ines for conducting modular training and improving composi-
ional behaviour of modular neural networks. We have presented
302
a formal framework for identifying and solving dependencies
between modules in the network, enabling independent training
and improving compositional behaviour and generalization. As far
as we know, this is the first time that such an approach has been
proposed.

We have tested our proposal on a case study based on the
first implementation of NMN for the VQA v1 task, proving that in-
dependent modular training is possible and achieving accuracies
that improve up to 3.28 points over the end-to-end baseline with
greater robustness. We have also given insights into how mod-
ularity helps model analysis and redesign, improving robustness
and resource utilization. One of our most relevant contributions
is the surrogate gradient module, which makes it possible to train
a module via indirect supervision (see Section 3.1) and model the
output data type via a de facto specification.

We have concluded that neural data types help generalization
and compositionality, pointing at non-typed interfaces as an im-
portant source of compositionality issues and identifying some
of the existing neural network architectures that have leveraged
them with broad success.

While working with surrogate gradient modules, we have
detected some evidence that role implementations can present
several degrees of fidelity, ranging from low-fidelity roles – which
are a rough approximation of the target role and perform rather
poorly at training the neural module – to high-fidelity roles
— which perfectly reflect requirements and restrictions on the
neural module’s output and result in an optimal training. We
have also speculated about the use of synthetic gradients for this
task. Christiano et al. (2017) and Jaderberg et al. (2017) provide
evidence indicating that relatively simple neural networks are
able to learn a loss function or its gradient. It would be of great
interest to see if this kind of techniques could be leveraged
for having high quality modular losses or gradients and thus
making it possible to retrain modules without having to specify
a surrogate gradient module.

We lay these foundations with the intention of bootstrapping
modularity by design in the field of neural networks. There re-
mains the application of the modular approach to new instances
of modular networks, reusing components and building neural
libraries on the way. We find specially interesting the building
of modular intelligent systems for heterogeneous tasks and data,
where modular and dynamic neural networks may be an ex-
cellent option. Future work should also focus on mixing neural
modules with other modular software pieces and the training of

neural policies to optimally combine them.

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

D

c
t

A

a

c

R

A

A

B

B

C

C

C

C

D

G

G

G

G

G

H

H

H

H

J

J

J

J

J

J

J

K

K

K

L
L

M
N

P

P

Q

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This research did not receive any specific grant from funding
gencies in the public, commercial, or not-for-profit sectors.
The authors deeply thank the reviewers for their valuable

omments and suggestions.

eferences

badi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.
S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Zheng, X.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org. https://www.tensorflow.org/.

ndreas, J., Rohrbach, M., Darrell, T., & Klein, D. (2016). Neural module net-
works. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 39–48).

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., & Zitnick, C. L. (2015). VQA:
Visual question answering. In International conference on computer vision.

ahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T. H., de Vries, H., &
Courville, A. (2019). Systematic generalization: What is required and can
it be learned? In International conference on learning representations. URL
https://openreview.net/forum?id=HkezXnA9YX.

rock, A., Donahue, J., & Simonyan, K. (2019). Large scale GAN training for
high fidelity natural image synthesis. In International conference on learning
representations. URL https://openreview.net/forum?id=B1xsqj09Fm.

ai, J., Shin, R., & Song, D. (2017). Making neural programming architectures gen-
eralize via recursion. In International conference on learning representations.
URL https://openreview.net/forum?id=BkbY4psgg.

astillo-Bolado, D., Guerra-Artal, C., & Hernández-Tejera, M. (2019). Modularity
as a means for complexity management in neural networks learning. In
Proceedings of the AAAI 2019 spring symposium on combining machine learning
with knowledge engineering. URL http://ceur-ws.org/Vol-2350/paper8.pdf.

hen, K. (2015). Deep and modular neural networks. In Springer handbook of
computational intelligence. Springer, Ch. 28.

hristiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017).
Deep reinforcement learning from human preferences. In Advances in neural
information processing systems (pp. 4299–4307).

Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., & Graves, A. (2016). Associa-
tive long short-term memory. In M. F. Balcan, & K. Q. Weinberger (Eds.),
Proceedings of machine learning research: Vol. 48, Proceedings of the 33rd
international conference on machine learning (pp. 1986–1994). New York, New
York, USA: PMLR, URL http://proceedings.mlr.press/v48/danihelka16.html.

eng, J., Dong, W., Socher, R., Li, L. -J., Li, K., & Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition (pp. 248–255). IEEE.

Devlin, J., Chang, M. -W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Rep-
resenting model uncertainty in deep learning. In Proceedings of the 33rd
international conference on international conference on machine learning -
Volume 48 ICML’16, (pp. 1050–1059). JMLR.org.

Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S., & Russell, S. (2020).
Adversarial policies: Attacking deep reinforcement learning. In International
conference on learning representations. URL https://openreview.net/forum?id=
HJgEMpVFwB.

oller, C., & Kuchler, A. (1996). Learning task-dependent distributed representa-
tions by backpropagation through structure. In Neural Networks, 1996., IEEE
international conference on. Vol.1 (pp. 347–352). IEEE, http://dx.doi.org/10.
1109/icnn.1996.548916.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., & Ozair, S.
(2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information
processing systems 27 (pp. 2672–2680). Curran Associates, Inc., URL http:
//papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

raves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv
preprint arXiv:1410.5401.

raves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., & Grabska-
Barwińska, A. (2016). Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626), 471–476. http://dx.doi.org/10.
1038/nature20101.
303
refenstette, E., Hermann, K. M., Suleyman, M., & Blunsom, P. (2015). Learning to
transduce with unbounded memory. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing
systems 28 (pp. 1828–1836). Curran Associates, Inc., URL http://papers.nips.
cc/paper/5648-learning-to-transduce-with-unbounded-memory.pdf.

upta, N., Lin, K., Roth, D., Singh, S., & Gardner, M. (2020). Neural module
networks for reasoning over text. In International conference on learning
representations. URL https://openreview.net/forum?id=SygWvAVFPr.

anin, B., & Sellke, M. (2017). Approximating continuous functions by relu nets
of minimal width. arXiv preprint arXiv:1710.11278.

ochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

u, R., Andreas, J., Rohrbach, M., Darrell, T., & Saenko, K. (2017). Learning to
reason: End-To-End module networks for visual question answering. In the
IEEE international conference on computer vision.

upkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Compositionality decom-
posed: How do neural networks generalise? Journal of Artificial Intelligence
Research, http://dx.doi.org/10.1613/jair.1.11674.

acobs, R. (1990). Task decomposition through competition in a modular con-
nectionist architecture (Ph.D. thesis), Amherst, MA, USA: University of
Massachusets.

acobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures
of local-experts. Neural Computation, 3(1), 79–87.

aderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., & Silver, D.
(2017). Decoupled neural interfaces using synthetic gradients. In Proceedings
of the 34th international conference on machine learning-Volume 70 (pp.
1627–1635). JMLR.org.

ia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., & Girshick, R. (2014).
Caffe: Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093.

in, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation, 1(2), 61–70.
http://dx.doi.org/10.1016/j.swevo.2011.05.001.

ohnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., &
Girshick, R. (2017). CLEVR: A Diagnostic dataset for compositional language
and elementary visual reasoning. In CVPR.

oulin, A., & Mikolov, T. (2015). Inferring algorithmic patterns with stack-
augmented recurrent nets. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, & R. Garnett (Eds.), Advances in neural information
processing systems 28 (pp. 190–198). Curran Associates, Inc., URL
http://papers.nips.cc/paper/5857-inferring-algorithmic-patterns-with-stack-
augmented-recurrent-nets.pdf.

irsch, L., Kunze, J., & Barber, D. (2018). Modular networks: Learning to
decompose neural computation. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural
information processing systems 31 (pp. 2408–2418). Curran Associates,
Inc., URL http://papers.nips.cc/paper/7508-modular-networks-learning-to-
decompose-neural-computation.pdf.

lein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings
of the 41st annual meeting on association for computational linguistics - Volume
1 ACL ’03, (pp. 423–430). USA: Association for Computational Linguistics,
http://dx.doi.org/10.3115/1075096.1075150.

urach, K., Andrychowicz, M., & Sutskever, I. (2015). Neural random-access
machines. arXiv preprint arXiv:1511.06392.

adousse, G., & Maley, A. (1987). Oxford English, Role play. OUP Oxford.
u, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of neural

networks: A view from the width. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in
neural information processing systems 30 (pp. 6231–6239). Curran Associates,
Inc., URL http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-
networks-a-view-from-the-width.pdf.

ontague, R. (1970). Universal grammar. Theoria, 36(3), 373–398.
ovak, R., Bahri, Y., Abolafia, D. A., Pennington, J., & Sohl-Dickstein, J. (2018).

Sensitivity and generalization in neural networks: An empirical study. In
International conference on learning representations. URL https://openreview.
net/forum?id=HJC2SzZCW.

aszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E. and
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
.... Chintala, S. (2019). Pytorch: An imperative style, high-performance
deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d’Alché Buc, F., Fox, E., & Garnett, R. (Eds.), Advances in neural infor-
mation processing systems 32 (pp. 8024–8035). Curran Associates, Inc.,
URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

erez, E., Strub, F., de Vries, H., Dumoulin, V., & Courville, A. C. (2018). FiLM:
Visual reasoning with a general conditioning layer. In AAAI .

ueipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Tucker], P.
K. (2005). Surrogate-based analysis and optimization. Progress in Aerospace
Sciences, 41(1), 1–28. http://dx.doi.org/10.1016/j.paerosci.2005.02.001.

https://www.tensorflow.org/
https://openreview.net/forum?id=HkezXnA9YX
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=BkbY4psgg
http://ceur-ws.org/Vol-2350/paper8.pdf
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb9
http://proceedings.mlr.press/v48/danihelka16.html
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb11
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb13
https://openreview.net/forum?id=HJgEMpVFwB
https://openreview.net/forum?id=HJgEMpVFwB
https://openreview.net/forum?id=HJgEMpVFwB
http://dx.doi.org/10.1109/icnn.1996.548916
http://dx.doi.org/10.1109/icnn.1996.548916
http://dx.doi.org/10.1109/icnn.1996.548916
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1410.5401
http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1038/nature20101
http://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory.pdf
http://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory.pdf
http://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory.pdf
https://openreview.net/forum?id=SygWvAVFPr
http://arxiv.org/abs/1710.11278
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb22
http://dx.doi.org/10.1613/jair.1.11674
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb25
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb26
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb27
http://arxiv.org/abs/1408.5093
http://dx.doi.org/10.1016/j.swevo.2011.05.001
http://papers.nips.cc/paper/5857-inferring-algorithmic-patterns-with-stack-augmented-recurrent-nets.pdf
http://papers.nips.cc/paper/5857-inferring-algorithmic-patterns-with-stack-augmented-recurrent-nets.pdf
http://papers.nips.cc/paper/5857-inferring-algorithmic-patterns-with-stack-augmented-recurrent-nets.pdf
http://papers.nips.cc/paper/7508-modular-networks-learning-to-decompose-neural-computation.pdf
http://papers.nips.cc/paper/7508-modular-networks-learning-to-decompose-neural-computation.pdf
http://papers.nips.cc/paper/7508-modular-networks-learning-to-decompose-neural-computation.pdf
http://dx.doi.org/10.3115/1075096.1075150
http://arxiv.org/abs/1511.06392
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb35
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb37
https://openreview.net/forum?id=HJC2SzZCW
https://openreview.net/forum?id=HJC2SzZCW
https://openreview.net/forum?id=HJC2SzZCW
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1016/j.paerosci.2005.02.001

D. Castillo-Bolado, C. Guerra-Artal and M. Hernández-Tejera Neural Networks 139 (2021) 294–304

R

S

S

S

S

V

Y

Y

eed, S., & De Freitas, N. (2015). Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279.

ilver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., & van den Driessche, G.
(2016). Mastering the game of go with deep neural networks and tree search.
Nature, 529, 484–489.

imonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv e-prints, arXiv:1409.1556.

ingh, A., Goswami, V., Natarajan, V., Jiang, Y., Chen, X., & Shah, M. (2018). Pythia-
a platform for vision & language research. In Sysml workshop, NeurIPS: Vol.
2018.

ocher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., & Ng, A. Y. (2013).
Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing (pp. 1631–1642).
304
Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations
for deep learning in NLP. In Proceedings of the 57th annual meeting of
the association for computational linguistics (pp. 3645–3650). Florence, Italy:
Association for Computational Linguistics, http://dx.doi.org/10.18653/v1/P19-
1355.

éniat, T., Schwander, O., & Denoyer, L. (2019). Stochastic adaptive neural archi-
tecture search for keyword spotting. In ICASSP 2019-2019 IEEE international
conference on acoustics, speech and signal processing (pp. 2842–2846). IEEE.

osinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2015). Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.
06579.

u, Z., Yu, J., Cui, Y., Tao, D., & Tian, Q. (2019). Deep modular co-attention
networks for visual question answering. In the IEEE conference on computer
vision and pattern recognition.

http://arxiv.org/abs/1511.06279
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb43
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb45
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb45
http://dx.doi.org/10.18653/v1/P19-1355
http://dx.doi.org/10.18653/v1/P19-1355
http://dx.doi.org/10.18653/v1/P19-1355
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb48
http://refhub.elsevier.com/S0893-6080(21)00122-2/sb48
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1506.06579

	Design and independent training of composable and reusable neural modules
	Introduction
	Modularity and compositionality
	Modular training
	Compositional dependencies
	Modular interfaces and neural data types
	The surrogate gradient module
	Learning by role
	Design considerations

	Related work
	Experiments
	Case study: Neural module networks and VQA
	Implementing a surrogate gradient module
	Validation of the surrogate gradient module
	Direct modular training
	Adjusted modular training
	Compositionality

	Discussion and future work
	Declaration of competing interest
	Acknowledgements
	References

