Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106376
Título: Anisotropic Weighted KS-NLM Filter for Noise Reduction in MRI
Autores/as: Kanoun, Bilel
Ambrosanio, Michele
Baselice, Fabio
Ferraioli, Giampaolo
Pascazio, Vito
Gómez Déniz, Luis 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: MRI denoising
Non-local means
KS distance
Fecha de publicación: 2020
Publicación seriada: IEEE Access 
Resumen: The topic of denoising magnetic resonance (MR) images is considered in this paper. More in detail, an enhanced Non-Local Means (NLM) filter using the Kolmogorov-Smirnov (KS) distance is proposed. The KS-NLM approach estimates the similarity between image patches by computing the KS distance. To overcome that NLM filters assign the same role to all pixels in patches, that is, not privileging the central one, we propose a new filter, namely the Anisotropic Weighted KS-NLM (Aw KS-NLM), which better deals with central pixels within the patches by, on one hand, including a suitable weighted strategy and, on the other, by performing a local anisotropy analysis. The Aw KS-NLM has been compared to other existing non-local Means (NLM) methodologies in both MRI simulated and real datasets. The results provide excellent noise reduction and image-detail preservation.
URI: http://hdl.handle.net/10553/106376
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2020.3029297
Fuente: IEEE Access [ISSN 2169-3536], n. 8, p. 184866-184884
Colección:Artículos
miniatura
Adobe PDF (6,14 MB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 24-nov-2024

Visitas

79
actualizado el 19-oct-2024

Descargas

164
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.