Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/106376
Título: | Anisotropic Weighted KS-NLM Filter for Noise Reduction in MRI | Autores/as: | Kanoun, Bilel Ambrosanio, Michele Baselice, Fabio Ferraioli, Giampaolo Pascazio, Vito Gómez Déniz, Luis |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | MRI denoising Non-local means KS distance |
Fecha de publicación: | 2020 | Publicación seriada: | IEEE Access | Resumen: | The topic of denoising magnetic resonance (MR) images is considered in this paper. More in detail, an enhanced Non-Local Means (NLM) filter using the Kolmogorov-Smirnov (KS) distance is proposed. The KS-NLM approach estimates the similarity between image patches by computing the KS distance. To overcome that NLM filters assign the same role to all pixels in patches, that is, not privileging the central one, we propose a new filter, namely the Anisotropic Weighted KS-NLM (Aw KS-NLM), which better deals with central pixels within the patches by, on one hand, including a suitable weighted strategy and, on the other, by performing a local anisotropy analysis. The Aw KS-NLM has been compared to other existing non-local Means (NLM) methodologies in both MRI simulated and real datasets. The results provide excellent noise reduction and image-detail preservation. | URI: | http://hdl.handle.net/10553/106376 | ISSN: | 2169-3536 | DOI: | 10.1109/ACCESS.2020.3029297 | Fuente: | IEEE Access [ISSN 2169-3536], n. 8, p. 184866-184884 |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
8
actualizado el 24-nov-2024
Visitas
79
actualizado el 19-oct-2024
Descargas
164
actualizado el 19-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.