Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/105797
Título: Towards stroke patients’ upper-limb automatic motor assessment using smartwatches
Autores/as: Bensalah, Asma
Chen, Jialuo
Fornés, Alicia
Carmona-Duarte, Cristina 
Lladós, Josep
Ferrer, Miguel Ángel 
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Human activity recognition
stroke rehabilitation
Fugl- Meyer assessment
Gesture Spotting
Smartwatches
Fecha de publicación: 2021
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 25th International Conference on Pattern Recognition (ICPR 2020) 
Resumen: Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.
URI: http://hdl.handle.net/10553/105797
ISBN: 978-3-030-68762-5
ISSN: 0302-9743
DOI: 10.1007/978-3-030-68763-2_36
Fuente: Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, v. 12661, p. 476-489, (Enero 2021)
Colección:Capítulo de libro
miniatura
Adobe PDF (2,24 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Visitas

194
actualizado el 27-ene-2024

Descargas

195
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.