Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/77708
DC FieldValueLanguage
dc.contributor.authorMendonca, Fabioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorJulia-Serda, Gabrielen_US
dc.contributor.authorRavelo García, Antonio Gabrielen_US
dc.date.accessioned2021-02-12T08:13:29Z-
dc.date.available2021-02-12T08:13:29Z-
dc.date.issued2020en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/77708-
dc.description.abstractThe quality of sleep can be affected by the occurrence of a sleep related disorder and, among these disorders, obstructive sleep apnea is commonly undiagnosed. Polysomnography is considered to be the gold standard for sleep analysis. However, it is an expensive and labor-intensive exam that is unavailable to a large group of the world population. To address these issues, the main goal of this work was to develop an automatic scoring algorithm to analyze the single-lead electrocardiogram signal, performing a minute-by-minute and an overall estimation of both quality of sleep and obstructive sleep apnea. The method employs a cross-spectral coherence technique which produces a spectrographic image that fed three one-dimensional convolutional neural networks for the classification ensemble. The predicted quality of sleep was based on the electroencephalogram cyclic alternating pattern rate, a sleep stability metric. Two methods were developed to indirectly evaluate this metric, creating two sleep quality predictions that were combined with the sleep apnea diagnosis to achieve the final global sleep quality estimation. It was verified that the quality of sleep of the nineteen tested subjects was correctly identified by the proposed model, advocating the significance of clinical analysis. The model was implemented in a non-invasive and simple to self-assemble device, producing a tool that can estimate the quality of sleep and diagnose the obstructive sleep apnea at the patient’s home without requiring the attendance of a specialized technician. Therefore, increasing the accessibility of the population to sleep analysis.en_US
dc.languageengen_US
dc.relationPortuguese Foundation for Science and Technology through the Projeto Estratégico under Grant LA 9—UID/EEA/50009/2019en_US
dc.relationAgência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI) Grant M1420-09-5369-FSE-000001en_US
dc.relationRegional Government of Madeira M1420-01-0145-FEDER-000002en_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], v. 8, p. 158523-158537en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.other1DCNNen_US
dc.subject.otherCAPen_US
dc.subject.otherECGen_US
dc.subject.otherOSAen_US
dc.subject.otherSleep qualityen_US
dc.titleA Method for Sleep Quality Analysis Based on CNN Ensemble With Implementation in a Portable Wireless Deviceen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2020.3019734en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,587
dc.description.jcr3,367
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (2,46 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.