Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/77436
DC FieldValueLanguage
dc.contributor.advisorPérez Carballo, Pedro Franciscoes
dc.contributor.advisorNúñez Ordóñez, Antonioes
dc.contributor.authorSpahr, Julianes
dc.date.accessioned2021-02-01T12:44:22Z-
dc.date.available2021-02-01T12:44:22Z-
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/10553/77436-
dc.description.abstractThis Master’s thesis comprises the design and implementation of a hardware platform that integrates critical algorithms of Big Data application processing on a Xilinx Zynq series SoC, improving significantly it’s efficiency in comparison to software implementations. Specifically, a MapReduce platform has been designed using the classic WordCount application to establish a generic architecture that allows for easy IP block substitution to modify the application into another, if it complies with the MapReduce outline. This work starts presenting key aspects of the Big Data concept and techniques for massive data analysis in modern systems. Through this, we cover the MapReduce programming model, for large data processing and generation through parallelization on clusters. Following up, the used Xilinx Zynq Design Methodology is explained, that allows for the design of flexible and configurable platforms, leading finally into the tools used in this thesis, among which we emphasize the Xilinx Vivado Design Suite for SoC FPGA. Lastly, the designed prototype is put through a validation phase to estimate the performance parameters of the system, i.e. latency, throughput and utilization of the MapReduce system. Based on these results, we conclude that the designed platform is a good solution with respect to massive data analysis for Big Data applications, due to its high computing speed, low power consumption and utilization and ultimately due to its flexibility to be adapted for other MapReduce applications of similar characteristics.en_US
dc.languageengen_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.titleDiseño e implementación de una arquitectura MapReduce para aplicaciones Big Data mediante síntesis de alto niveles
dc.typeinfo:eu-repo/semantics/masterThesisen_US
dc.typeMasterThesisen_US
dc.contributor.centroIU de Microelectrónica Aplicadaen_US
dc.contributor.departamentoDepartamento de Ingeniería Electrónica Y Automáticaes
dc.contributor.facultadEscuela de Ingeniería de Telecomunicación y Electrónicaen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Trabajo final de másteren_US
dc.utils.revisionen_US
dc.identifier.matriculaTFT-42677es
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELes
dc.contributor.titulacionMáster Universitario en Tecnologías de Telecomunicaciónes
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.advisor.deptGIR IUMA: Sistemas de Información y Comunicaciones-
crisitem.advisor.deptIU de Microelectrónica Aplicada-
crisitem.advisor.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.advisor.deptGIR IUMA: Sistemas de Información y Comunicaciones-
crisitem.advisor.deptIU de Microelectrónica Aplicada-
crisitem.advisor.deptDepartamento de Ingeniería Electrónica y Automática-
Appears in Collections:Trabajo final de máster
Thumbnail
Adobe PDF (6,61 MB)
Thumbnail
Adobe PDF (3,64 MB)
Thumbnail
Adobe PDF (672,62 kB)
Show simple item record

Page view(s)

97
checked on Nov 1, 2024

Download(s)

90
checked on Nov 1, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.