Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/77424
DC FieldValueLanguage
dc.contributor.advisorMarrero Callicó, Gustavo Iván-
dc.contributor.advisorCamacho Galán, Rafael-
dc.contributor.authorOrtega Sarmiento, Samuel-
dc.date.accessioned2021-02-01T12:30:27Z-
dc.date.available2021-02-01T12:30:27Z-
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/10553/77424-
dc.description.abstractHyperspectral imaging is an emerging technology for medical diagnosis. Some previous studies have employed this technology for detecting cancer diseases. In this research work, a multidisciplinary team compounds by pathologists and engineers present a proof of concept of using hyperspectral imaging analysis in order to detect human brain tumour tissue inside pathological slides. The samples were acquired from four different patient diagnosed with brain cancer, specifically with high-grade gliomas. The hyperspectral capture system consists on a hyperspectral camera coupled with a microscope. This system works in the VNIR spectral range (from 400 nm to 1000 nm) with a spectral resolution of 3 nm. The images where then processed in order to remove the effect caused by the acquisition system. Later, and based on the diagnostic provided by pathologist, a spectral dataset containing only labelled spectra from normal and tumour tissue was created. The data were then processed using three different supervised learning algorithms: Support Vector Machines, Artificial Neural Networks and Random Forests. The capabilities of discriminating between normal and tumour issue have been evaluated in three different scenarios, where the inter-patient variability of data was or not taken into account. The results achieved in this research study are promising, showing that it is possible to distinguish between normal and tumour tissue exclusively attending to the spectral signature of tissue.en_US
dc.languageengen_US
dc.relationHyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080)en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject3314 Tecnología médicaen_US
dc.titleTécnicas de reconocimiento automático de patrones aplicadas a imágenes hiperespectrales médicasen_US
dc.typeinfo:eu-repo/semantics/masterThesisen_US
dc.typeMasterThesisen_US
dc.contributor.centroIU de Microelectrónica Aplicadaen_US
dc.contributor.facultadEscuela de Ingeniería de Telecomunicación y Electrónicaen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Trabajo final de másteren_US
dc.utils.revisionen_US
dc.identifier.matriculaTFT-35987es
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.titulacionMáster Universitario en Tecnologías de Telecomunicaciónes
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.advisor.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.advisor.deptIU de Microelectrónica Aplicada-
crisitem.advisor.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
Appears in Collections:Trabajo final de máster
Thumbnail
Adobe PDF (4,23 MB)
Thumbnail
Adobe PDF (916,9 kB)
Thumbnail
Adobe PDF (412,08 kB)
Show simple item record

Page view(s)

88
checked on Aug 24, 2024

Download(s)

64
checked on Aug 24, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.