Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77407
Campo DC Valoridioma
dc.contributor.authorSteinmetzer, Tobiasen_US
dc.contributor.authorWilberg, Sandroen_US
dc.contributor.authorBönninger, Ingriden_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2021-02-01T09:04:15Z-
dc.date.available2021-02-01T09:04:15Z-
dc.date.issued2020en_US
dc.identifier.issn0141-9331en_US
dc.identifier.urihttp://hdl.handle.net/10553/77407-
dc.description.abstractGait deviations such as asymmetry are one of the characteristic symptoms of motor dysfunctions that contribute to the risk of falls. Our objective is to measure gait abnormalities such as asymmetry of the lower limbs in order to evaluate the diagnosis more objectively. For the measurement we use inertial measurement unit (IMU) sensors and force sensors, which are integrated in wristbands and insoles. To extend the battery life of wearable devices, we only save data of the activity gait within the wearables. Therefore we perform activity recognition with a smartphone. Using convolutional neural network (CNN) we achieved an accuracy of 94.7 % of the activity gait recognition. Before recording we synchronize the wearable sensors and reach a maximum latencies of 3 ms . Before the analysis of the symmetry we detect the strides by using a CNN with an accuracy of 98.8 %. For the symmetry evaluation we used dynamic time warping (DTW). The DTW enables us to calculate symmetry of the complete time series of human gait.en_US
dc.languageengen_US
dc.relation.ispartofMicroprocessors and Microsystemsen_US
dc.sourceMicroprocessors and Microsystems [ISSN 0141-9331], v. 77, 103118, (Septiembre 2020)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherSynchronizationen_US
dc.subject.otherGait analysisen_US
dc.subject.otherInertial sensorsen_US
dc.subject.otherDynamic time warpingen_US
dc.subject.otherConvolutional neural networksen_US
dc.subject.otherSymmetryen_US
dc.titleAnalyzing gait symmetry with automatically synchronized wearable sensors in daily lifeen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.micpro.2020.103118en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,323
dc.description.jcr1,525
dc.description.sjrqQ3
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameSteinmetzer, Tobias-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
miniatura
Adobe PDF (1,5 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.