Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77405
Campo DC Valoridioma
dc.contributor.authorJoshi, Rakesh Chandraen_US
dc.contributor.authorYadav, Saumyaen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2021-02-01T08:59:42Z-
dc.date.available2021-02-01T08:59:42Z-
dc.date.issued2020en_US
dc.identifier.issn1099-4300en_US
dc.identifier.urihttp://hdl.handle.net/10553/77405-
dc.description.abstractVisually impaired people face numerous di culties in their daily life, and technological interventions may assist them to meet these challenges. This paper proposes an artificial intelligence-based fully automatic assistive technology to recognize di erent objects, and auditory inputs are provided to the user in real time, which gives better understanding to the visually impaired person about their surroundings. A deep-learning model is trained with multiple images of objects that are highly relevant to the visually impaired person. Training images are augmented and manually annotated to bring more robustness to the trained model. In addition to computer vision-based techniques for object recognition, a distance-measuring sensor is integrated to make the device more comprehensive by recognizing obstacles while navigating from one place to another. The auditory information that is conveyed to the user after scene segmentation and obstacle identification is optimized to obtain more information in less time for faster processing of video frames. The average accuracy of this proposed method is 95.19% and 99.69% for object detection and recognition, respectively. The time complexity is low, allowing a user to perceive the surrounding scene in real time.en_US
dc.languageengen_US
dc.relationGrants from Department of Science and Technology, Government of India, grant number SEED/TIDE/2018/6/Gen_US
dc.relation.ispartofEntropyen_US
dc.sourceEntropy [ISSN 1099-4300], v. 22(9), 941en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherArtificial intelligenceen_US
dc.subject.otherAssistive systemsen_US
dc.subject.otherComputer visionen_US
dc.subject.otherDeep learningen_US
dc.subject.otherMachine learningen_US
dc.subject.otherObject recognitionen_US
dc.titleEfficient Multi-Object Detection and Smart Navigation Using Artificial Intelligence for Visually Impaired Peopleen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/e22090941en_US
dc.identifier.issue9-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,468
dc.description.jcr2,524
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
miniatura
Adobe PDF (4,57 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

34
actualizado el 05-ene-2025

Visitas

151
actualizado el 24-ago-2024

Descargas

253
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.